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Neutrino mixing
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Neutrino mass hierarchy
Is 3 mass eigenstate heavier or lighter than 1 and 2?

The mass hierarchy can impact on many important processes in particle physics, 

astrophysics and cosmology.

E.g. in case of the inverted mass hierarchy the 02-decay could be observed

in the next generation experiments proving Majorana (excluding Dirac) nature of the 

neutrinos.

We know

Δm2
21  <<  |Δm2

32|≈ |Δm2
31 |

Δm2
21 ≈ 7.6 x 10-5 eV2

|Δm2
32|≈ |Δm2
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where mij
2=mi
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We want to know

m3 <  m1,2 or           m3 <  m1,2

Normal                               Inverted



JUNO physics measurements
𝑃 ҧ𝜈𝑒 → ҧ𝜈𝑒 = 1 − sin2 2𝜃13 cos2 𝜃12 sin
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Measurement of the antineutrino 

spectrum allows to determine precisely 

four oscillation parameters:

sin2 2𝜃12 𝛥𝑚21
2 sin2 2𝜃13 |𝛥𝑚𝑒𝑒

2 |

Measurement is the most sensitive in 

the location of the maximal oscillation 

effect.

A good energy resolution and statistics is necessary to distinguish between the 

normal and inverted neutrino mass hierarchies.
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• Jiangmen Underground Neutrino Observatory

• a multi-purpose neutrino experiment, 

• approved in Feb. 2013,

• ~ 300 M$,

• data taking: ~2020.

• Neutrino source: 10 nuclear 

reactors (Yangjiang+Taishan: 

26.6-35.7 GWth),

• baseline: 53 km, 

• overburden: ~700 m.

JUNO Experiment
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Detection of ν𝑒
Inverse beta-decay in LAB liquid scintillator:

 + p  D + (2.2 MeV)    (t~240 μs)

E  Te+ + Tn + (mn - mp) + m e+  Te+ + 1.8 MeV (threshold)

Eprompt = Te+ + 2m e (annihilation gammas)

E  Eprompt + 0.8 MeV
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How to reach the requested energy resolution
(Mass Hierarchy)

KamLAND BOREXINO Daya Bay JUNO

Target Mass 1 kton 300 ton 8x20 ton 20 kton

PE Collection

(PE/MeV)
250 500 160 1200

Photocathode 

Coverage
34% 34% 12% 80%

Energy 

Resolution
6%/√E 5%/√E 7.5%/√E 3%/√E

Energy 

Calibration
2% 1% 1.5% <1%

JUNO will be the largest liquid scintillator detector and with 

the best energy resolution in the world.



JUNO detector
Central detector: 20 kton active mass LAB scintillator, PMTs coverage  > 75%, 

energy resolution 3%@1 MeV.

Detector overburden: ~700 m of granite.
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Top tracker (TT):

• Re-using the Target Tracker walls of the OPERA 

experiment;

• Total number is 62 and cover half of the top area;

• 3 TT layers spaced by 1.7 m, each layer have x,y readout;

• A solid bridge support the TT and its mechanical structure;

• Perform a precise muon tracking and provide valuable 

information for cosmic muon induced Li9/He8 study.

top tracker
Water Cherenkov detector:

• ~2000 20” MCP-PMTs used for veto system;

• Detector efficiency is expected to be >95%;

• Fast neutron background ~0.1/day.

Compensation coils system used  for earth magnet field shielding 

to keep PMT performance.

Water system:

• Employ a circulation/polishing water system;

• Keep a good water quality -including radon control.

one wall

Veto system



Central detector PMT systems

Design goal: 1.2 k p.e. / MeV

Requirements:

 High optical coverage (~ 78%)

 High photon detection efficiency

 Acceptable noise / radio purity 

levels

 Acceptable time resolution (event 

reconstruction)

 Broad dynamic range

18 k large 20” PMTs

 75% coverage

 Stochastic term: 3% / sqrt(E/MeV)

 Slower + worse p.e. resolution

 High dark noise

25 k small 3” PMTs

 3% coverage

 Stochastic term: 14% / sqrt(E)

 Faster + better p.e. resolution

 Low dark noise

JUNO will have two independent calorimetry PMT systems:
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Contracts were signed in 2015

• 15k MCP-PMT (75%) from 

NNVT

• 5k Dynode PMT (25%) from 

Hamamatsu

20” PMTs
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20” PMTs – electronics

1F3 scheme

• PMT: photomultiplier tubes

• HV: High Voltage units

• ADU: Analog to Digital Unit

• GCU: Global Control Unit

• CAT cable: Category 5e cable

• High reliability needed

• Severe constraints by power consumption
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3" PMTs
• 25000 3” PMTs, contracted to HZC (China)

• Together with the 20” PMTs as a double calorimetry

• Increase photon statistics by ~2.5%

• Energy measurement via “photon counting”, better control of 

systematics

• muon tracking, supernova detection …

• Production is expected to start early 2018
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• The goal:

• Overall energy resolution: ≤ 3%/√E/MeV

• Energy scale uncertainty: <1%

• Radioactive sources:

• gamma： 40K, 54Mn, 60Co, 137Cs

• positrons：22Na, 68Ge

• neutrons： 241Am-Be, 241Am- 13C or 241Pu- 13C, 252Cf

• Four complementary calibration systems

• 1-D: Automatic Calibration Unit (ACU) → for central axis 

scan (sub-cm positioning),

• 2-D: 

• Cable Loop System (CLS) → scan vertical planes (10 

cm precision),

• Guide Tube Calibration System (GTCS) → CD outer 

surface scan (already tested),

• 3-D: Remotely Operated under-LS Vehicle (ROV) → whole 

detector scan (first version tested)

Calibration
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Experimental site



竖井入口

Vertical shaft: 564 meters

Experimental hall

Overburden: 680 m meters

Width: 49 meters

Length:55 meters

already constructed

already constructed

JUNO civil construction
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JUNO Physics Program

• Reactor neutrinos

• Mass Hierarchy

• needed energy resolution ~3% @ 1 MeV,

• energy scale uncertainty <1%

• Precision measurements of oscillation parameters

• Supernovae neutrinos

• Geoneutrinos

• Solar neutrinos

• Atmospheric neutrinos

• Exotic searches

Neutrino Physics with JUNO,

J. Phys. G 43, 030401 (2016)
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2014: 
International 
collaboration 
established

•start civil 
construction

2015: PMT 
production 
line 
manufacturi
ng

2016: Start 
PMT and 
detector 
production

2017: Start 
PMT 
testing

2018: PMT 
potting

2019: Start 
building 
central 
detector 
and LS 
filling

beginning 
of next 
decade: 
start data 
taking

JUNO schedule



V. Vorobel HEP 2018, Valparaiso 19

Prague, Nov. 2017 M. Dracos IPHC/CNRS-Unistra

71 Institutions, 550 collaborators

JUNO Collaboration
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Conclusions

• JUNO Collaboration since 2014

• 71 institutes from 16 countries

• High energy resolution is needed mainly for MH determination

 High quality liquid scintillator

 High detection efficiency PMTs

 More than 75% photocathode coverage

 Extensive calibration program

• Construction of the underground lab ongoing

• PMTs already purchased and tests already started

• The detector design is now finalised, installation by 2019

• Data taking beginning of next decade
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Backup
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Energy non-linearity calibration 

• Two major sources of non-linearity:

• Scintillator response 

• Readout electronics

• Energy model for positron is derived from 

measured gamma and electron 

responses using simulation.

~1% uncertainty (correlated among detectors)

gamma electron

positron
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Central detector
Acrylic sphere+ 

20kt Liquid Scin+

~18000 20” PMT+

~25000 3’’ PMT

Water 

Cherenkov

~2400 20’’ PMT

Top Tracker

Calibration

Pool’s height

44m

Water depth

43.5m

D43.5m

AS: ID35.4m

SSLS: ID40.1m

AS: Acrylic sphere;   SSLS: stainless steel latticed shell

LS 

Filling 

room
Pure water

filling room

Earth 

Magnetic 

Field 

shielding 

coils
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Acrylic sphere supported by stainless 

steel shell

Connection 

bars

Acrylic 

node

steel node

Top 

chimney

Acrylic 

sphere

Stainles

s steel 

Latticed 

shell

pillars

PMTs

Central detector

Other system of CD: filling system
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Veto System

Top Tracker

• Re-using the OPERA’s Target 

Tracker (plastic scintillators)

• Three (x-y) layers to ensure good 

muon tracking (3 muons/s)

• Muon rejection studies

• Cosmogenic background study (9Li, 
8He) 

• Arrived in China in July

Top Tracker

(3 x-y layers)

neutron

8He

9Li

12C


