### **Status of JUNO**

(Jiangmen Underground Neutrino Observatory) future neutrino oscillation experiment

Vít Vorobel, Charles University, Prague on behalf of Daya Bay Collaboration





### Neutrino mixing

flavor eigenstates

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \vdots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & \cdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & \cdots \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \vdots \end{pmatrix}$$

mass eigenstates

Pontecorvo-Maki-Nakagawa-Sakata Matrix

$$\bigcup = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix}$$
  
Atmospheric Reactor  $\theta_{13} = 9^{\circ}$   $\theta_{13} = 9^{\circ}$   $\theta_{12} \approx 34^{\circ}$  Majorana

### Neutrino mass hierarchy

Is  $v_3$  mass eigenstate heavier or lighter than  $v_1$  and  $v_2$ ?

The mass hierarchy can impact on many important processes in particle physics, astrophysics and cosmology.

E.g. in case of the inverted mass hierarchy the  $0v2\beta$ -decay could be observed in the next generation experiments proving Majorana (excluding Dirac) nature of the neutrinos. We want to know

 $m_3^2$ 

0



### JUNO physics measurements

 $P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \frac{\sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})}{\cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}}$ 

 $\approx 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{ee} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ 

$$\Delta_{ij} = \Delta m_{ij}^2 \frac{L}{4E}$$

Measurement of the antineutrino spectrum allows to determine precisely four oscillation parameters:



Measurement is the most sensitive in the location of the maximal oscillation effect.



A good energy resolution and statistics is necessary to distinguish between the normal and inverted neutrino mass hierarchies.

## **JUNO** Experiment

- Jiangmen Underground Neutrino Observatory
- a multi-purpose neutrino experiment,
- approved in Feb. 2013,
- ~ 300 M\$,
- data taking: ~2020.

- Neutrino source: 10 nuclear reactors (Yangjiang+Taishan: 26.6-35.7 GWth),
- baseline: 53 km,
- overburden: ~700 m.



### Detection of $\overline{v}_e$

Inverse beta-decay in LAB liquid scintillator:



# How to reach the requested energy resolution (Mass Hierarchy)

|                           | KamLAND | BOREXINO | Daya Bay | JUNO    |
|---------------------------|---------|----------|----------|---------|
| Target Mass               | 1 kton  | 300 ton  | 8x20 ton | 20 kton |
| PE Collection<br>(PE/MeV) | 250     | 500      | 160      | 1200    |
| Photocathode<br>Coverage  | 34%     | 34%      | 12%      | 80%     |
| Energy<br>Resolution      | 6%/√E   | 5%/√E    | 7.5%/√E  | 3%/√E   |
| Energy<br>Calibration     | 2%      | 1%       | 1.5%     | <1%     |

JUNO will be the largest liquid scintillator detector and with the best energy resolution in the world.

### JUNO detector

Central detector: 20 kton active mass LAB scintillator, PMTs coverage > 75%, energy resolution 3%@1 MeV.

**Detector overburden:** ~700 m of granite.



### Veto system

#### Top tracker (TT):

- Re-using the Target Tracker walls of the OPERA experiment;
- Total number is 62 and cover half of the top area;
- 3 TT layers spaced by 1.7 m, each layer have x,y readout;
- A solid bridge support the TT and its mechanical structure;
- Perform a precise muon tracking and provide valuable information for cosmic muon induced Li9/He8 study.

#### Water Cherenkov detector:

- ~2000 20" MCP-PMTs used for veto system;
- Detector efficiency is expected to be >95%;
- Fast neutron background ~0.1/day.

**Compensation coils system** used for earth magnet field shielding to keep PMT performance.

#### Water system:

- Employ a circulation/polishing water system;
- Keep a good water quality -including radon control.





### Central detector PMT systems



**Design goal:** 1.2 k p.e. / MeV **Requirements:** 

- High optical coverage (~ 78%)
- High photon detection efficiency
- Acceptable noise / radio purity levels
- Acceptable time resolution (event reconstruction)
- Broad dynamic range

#### JUNO will have two independent calorimetry PMT systems:

#### 18 k large 20" PMTs

- 75% coverage
- Stochastic term: 3% / sqrt(E/MeV)
- Slower + worse p.e. resolution
- High dark noise

#### 25 k small 3" PMTs

- 3% coverage
- Stochastic term: 14% / sqrt(E)
- Faster + better p.e. resolution
- Low dark noise

# 20" PMTs

20-inch Hamamatus PMT-Dynode Ellipsoidal Glass 20-inch IHEP-MCP-PMT-Ellipsoidal Glass Contracts were signed in 2015 • 15k MCP-PMT (75%) from 5k Dynode PMT (25%) from

| Characteristics                      | unit | MCP-PMT<br>(NNVT) | R12860<br>(Hamamatsu) |                |                             |
|--------------------------------------|------|-------------------|-----------------------|----------------|-----------------------------|
| Detection Efficiency<br>(QE*CE*area) | %    | 27%, > 24%        | 27%, >24%             |                | transparent ,PMMA           |
| P/V of SPE                           |      | 3.5, > 2.8        | 3, > 2.5              |                | glass bulb<br>broken easily |
| TTS on the top point                 | ns   | ~12, < 15         | 2.7, < 3.5            | subbox sings   |                             |
| Rise time/ Fall time                 | ns   | <b>R</b> ~2, F~12 | R~5, F~9              | prevent covers | stainless steel             |
| Anode Dark Count                     | Hz   | 20K, < 30K        | 10K, < 50K            | directly       | fix on the neck             |
| After Pulse Rate                     | %    | 1, <2             | 10, < 15              |                | > potting                   |
|                                      |      | 238U:50           | 238U:400              | ]              |                             |
| Radioactivity of glass               | ppb  | 232Th:50          | 232Th:400             |                |                             |
|                                      |      | 40K: 20           | 40K: 40               |                |                             |

V. Vorobel

**NNVT** 

Hamamatsu

•

### 20" PMTs – electronics

#### 1F3 scheme



- PMT: photomultiplier tubes
- HV: High Voltage units
- ADU: Analog to Digital Unit
- GCU: Global Control Unit
- CAT cable: Category 5e cable
- High reliability needed
- Severe constraints by power consumption



## 3" PMTs

- 25000 3" PMTs, contracted to HZC (China)
- Together with the 20" PMTs as a double calorimetry
  - Increase photon statistics by ~2.5%
  - Energy measurement via "photon counting", better control of systematics
  - muon tracking, supernova detection ...
- Production is expected to start early 2018





# Calibration

#### • The goal:

- Overall energy resolution: ≤ 3%/√E/MeV
- Energy scale uncertainty: <1%</li>
- Radioactive sources:
  - gamma: <sup>40</sup>K, <sup>54</sup>Mn, <sup>60</sup>Co, <sup>137</sup>Cs
  - positrons: <sup>22</sup>Na, <sup>68</sup>Ge
  - neutrons: <sup>241</sup>Am-Be, <sup>241</sup>Am- <sup>13</sup>C or <sup>241</sup>Pu- <sup>13</sup>C, <sup>252</sup>Cf
- Four complementary calibration systems
  - 1-D: Automatic Calibration Unit (ACU) → for central axis scan (sub-cm positioning),
  - 2-D:
    - Cable Loop System (CLS) → scan vertical planes (10 cm precision),
    - Guide Tube Calibration System (GTCS) → CD outer surface scan (already tested),
  - 3-D: Remotely Operated under-LS Vehicle (ROV) → whole detector scan (first version tested)



## Experimental site



### JUNO civil construction



# **JUNO Physics Program**

Neutrino Physics with JUNO, J. Phys. G 43, 030401 (2016)

- Reactor neutrinos
  - Mass Hierarchy
    - needed energy resolution ~3% @ 1 MeV,
    - energy scale uncertainty <1%
  - Precision measurements of oscillation parameters
- Supernovae neutrinos
- Geoneutrinos
- Solar neutrinos
- Atmospheric neutrinos
- Exotic searches













### JUNO schedule



V. Vorobel

### **JUNO** Collaboration

| Armenia | Yerevan Physics Institute      | China | Nankai U.            | Finland | University of Oulu | Italy    | INFN-Milano            |
|---------|--------------------------------|-------|----------------------|---------|--------------------|----------|------------------------|
| Belgium | Université libre de Bruxelles  | China | NCEPU                | France  | APC Paris          | Italy    | INFN-Milano Bicocca    |
| Brazil  | PUC                            | China | Pekin U.             | France  | CENBG Bordeaux     | Italy    | INFN-Padova            |
| Brazil  | UEL                            | China | Shandong U.          | France  | CPPM Marseille     | Italy    | INFN-Perugia           |
| Chile   | PCUC                           | China | Shanghai JT U.       | France  | IPHC Strasbourg    | Italy    | INFN-Roma 3            |
| Chile   | UTFSM                          | China | Sichuan U.           | France  | Subatech Nantes    | Pakistan | PINSTECH (PAEC)        |
| China   | BISEE                          | China | IMP-CAS              | Germany | ZEA FZ Julich      | Russia   | INR Moscow             |
| China   | Beijing Normal U.              | China | SYSU                 | Germany | RWTH Aachen U.     | Russia   | JINR                   |
| China   | CAGS                           | China | Tsinghua U.          | Germany | TUM                | Russia   | MSU                    |
| China   | ChongQing University           | China | UCAS                 | Germany | U. Hamburg         | Slovakia | FMPICU                 |
| China   | CIAE                           | China | USTC                 | Germany | IKP FZ Jülich      | Taiwan   | National Chiao-Tung U. |
| China   | DGUT                           | China | U. of South China    | Germany | U. Mainz           | Taiwan   | National Taiwan U.     |
| China   | ECUST                          | China | Wu Yi U.             | Germany | U. Tuebingen       | Taiwan   | National United U.     |
| China   | Guangxi U.                     | China | Wuhan U.             | Italy   | INFN Catania       | Thailand | SUT                    |
| China   | Harbin Institute of Technology | China | Xi'an JT U.          | Italy   | INFN di Frascati   | Thailand | NARIT                  |
| China   | IHEP                           | China | Xiamen University    | Italy   | INFN-Ferrara       | Thailand | PPRLCU                 |
| China   | Jilin U.                       | China | NUDT                 |         |                    | USA      | UMD1                   |
| China   | Jinan U.                       | Czech | R. Charles U. Prague |         |                    | USA      | UMD2                   |
| China   | Naniing U.                     |       |                      |         |                    |          |                        |



### Conclusions

- JUNO Collaboration since 2014
  - 71 institutes from 16 countries
- High energy resolution is needed mainly for MH determination
  - ✓ High quality liquid scintillator
  - ✓ High detection efficiency PMTs
  - ✓ More than 75% photocathode coverage
  - ✓ Extensive calibration program
- Construction of the underground lab ongoing
- PMTs already purchased and tests already started
- The detector design is now finalised, installation by 2019
- Data taking beginning of next decade

### Backup





HEP 2018, Valparaiso













## Energy non-linearity calibration





- Two major sources of non-linearity:
  - Scintillator response
  - Readout electronics
- Energy model for positron is derived from measured gamma and electron responses using simulation.
- ~1% uncertainty (correlated among detectors)

Calibration

Pure water filling room Top Tracker

Earth Magnetic Field shielding **Ceift**ral detector Acrylic sphere+ 20kt Liquid Scin+ ~18000 20" PMT+ ~25000 3" PMT

Water Cherenkov ~2400 20'' PMT



AS: Acrylic sphere; SSLS: stainless steel latticed shell

### **Central detector**



### Acrylic sphere supported by stainless steel shell

steel node

**Other system of CD: filling system** 

# Veto System

#### **Top Tracker**

- Re-using the OPERA's Target Tracker (plastic scintillators)
- Three (x-y) layers to ensure good muon tracking (3 muons/s)
- Muon rejection studies
- Cosmogenic background study (<sup>9</sup>Li, <sup>8</sup>He)
- Arrived in China in July







Fig. 3. Schematic view of a plastic scintillator strip wall