

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

The Pomeron spin-flip and its measurements

Michal Krelina Boris Kopeliovich

Universidad Técnica Federico Santa María & Centro Científico Tecnológico de Valparaíso-CCTVal

7th International Conference on High Energy Physics in the LHC Era 8-12 January 2018, Valparaíso, Chile

Outline

- Motivation & introduction
- Pomeron spin-flip in *pp* collisions
- Nuclear target case
- Gold nucleus puzzle
- Conclusions

Pomeron and its spin?

- **Pomeron** and differential cross section prediction is one of triumph of **Regge theory** in 1973.
- However, there is not *general agreement* about the pomeron spin.
- In community is a general agreement about the dominant spin non-flip hadronic interaction.
- But, there is no theoretical reason to think that the spinflip component of the **Pomeron** is zero.
 - If we assume **Pomeron** as Regge pole, we get zero spin asymmetry since the same phase
 - Even if we assume different phase (no Regge pole), we need spin-flip interaction to vary steeply with energy to distinguish them

Spin-flip Pomeron interaction?

Our goal:

Study the **spin-flip Pomeron** interaction.

Our method:

Study of the single spin asymmetry $A_N(t)$ in the CNI region.

$$A_N \frac{d\sigma}{dt} = 2 \operatorname{Im}[\phi_{++}\phi_{+-}^*]$$
$$\frac{d\sigma}{dt} = |\phi_{++}|^2 + |\phi_{+-}|^2$$

 ϕ_{++} - Non-flip amplitude ϕ_{+-} - Spin-flip amplitude

Why CNI region?

Let's assume that **Pomeron** can flip the spin.

Then, due to the same phase factor the hadronic single spin asymmetry will be zero anyway.

Solution is the interference with EM amplitude.

CNI (Coulomb-nuclear interference) region = a kinematical region of very low 4-momentum transfer squared, -t, where the interference electromagnetic-hadron terms dominates B.Z.Kopeliovich, B.G.Zakharov, Phys.Lett. B226 (1989) 156

How to calculate it?

Coulomb spin-flip and non-flip amplitude are known, as well as no-flip hadronic amplitude from data.

$$\phi^h = \phi_{++} \left(1 + i \frac{\sqrt{-t}}{m_N} \vec{\sigma} \cdot \vec{n} r_5 \right)$$

Spin-flip hadron amplitude can be parametrized by factor

$$r_5 = \frac{m_p \phi_{+-}}{\sqrt{-t} \operatorname{Im} \phi_{++}}$$

Assuming $r_5 = 0$ the asymmetry $A_N(t)$ can be fully predicted.

L.I.Lapidus & B.Kopeliovich Sov. J. Nucl. Phys. 19(1974) 114

Problems with spin-flip Pomeron in pp at low energies

- 1) Contribution from Reggeons, $r_5 = r_{5,\mathbb{P}} + r_{5,\mathbb{R}} \Rightarrow \text{small } r_5$ does not mean small $r_{5,\mathbb{P}}$...
- 2) Large experimental uncertainties

pp data from H-JET

Combined r_5 fit result

$r_5 = -0.0073 \pm 0.0032 - i0.0289 \pm 0.0128$

What next?

We want to suppress Reggeons

⇒ Higher energy⇒ Nuclear targets

Why nuclear target?

Two motivations:

Polarimetry – was actual 10 years ago, expected smaller errors at *pA* elastic scattering.

Reggeons – experimental data mostly from RHIC ($E_{LAB} = 100 \text{ GeV} \approx \sqrt{s} = 14 \text{ GeV}$). Expected a contribution mainly from the iso-vector Reggeons.

If we use the nucleus with zero isospin (e.g. Carbon), these Reggeons are excluded. For other nuclei are suppressed as 1/A. B. Kopeliovich, hep-ph/9801414

- *pd*: $r_5 = -0.005 \pm 0.003 + i0.267 \pm 0.056$
- *pC*: $r_5 = -0.051 \pm 0.001 i0.014 \pm 0.014$
- *pAI*: $r_5 = -0.100 \pm 0.003 i0.183 \pm 0.096$
- *pC* and *pAI* indicates higher r_5 then $pp \Rightarrow$ significant contribution from Reggeons in *pp*.

Remember result from *pp*:

 $r_5 = -0.0073 \pm 0.0032 - i0.0289 \pm 0.0128$

...but the Gold is the challenge

B. Kopeliovich, hep-ph/9801414

Estimation of $r_{5,\mathbb{P}}$ form Carbon is sufficient, for Gold the situation is more complicated. However, take a look at it...

Mistakes in formulas

We want to understand the *t* dependence \Rightarrow need to revise the calculation. We start from the Glauber. We found some mistakes in signs in original formulas.

B.Z. Kopeliovich and T.L. Trueman, Phys. Rev. D64, 034004 (2001)

$$\frac{16\pi}{(\sigma_{tot}^{pA})^2} \frac{d\sigma_{pA}}{dt} = \left[\frac{t_c}{t} F_A^{em}(t)\right]^2 + \left[\operatorname{Im} F_A^h(t)\right]^2 \left(\rho_{pA}^2(t) + 1 - \frac{t}{m_N^2} |r_5|^2\right) \\ + 2\frac{t_c}{t} F_A^{em}(t) F_A^h(t) \left(\rho_{pA}(t) + \delta_{pA}\right), \\ \frac{16\pi}{(\sigma_{tot}^{pA})^2} \frac{d\sigma_{pA}}{dt} A_N^{pA}(t) = \frac{\sqrt{-t}}{m_N} \operatorname{Im} F_A^h(t) \left\{ 2\operatorname{Im} F_A^h(t) (\operatorname{Rer}_5 - \operatorname{Im} r_5 \rho_{pA}(t)) \\ + F_A^{em}(t) \frac{t_c}{t} \left[(\mu_p - 1)(1 - \delta_{pA} \rho_{pA}(t)) - 2(\operatorname{Im} r_5 - \delta_{pA} \operatorname{Rer}_5) \right] \right\}$$

However, wrong signs were at not dominant terms and have no effect for the Gold description.

Wrong EM form factor

We found that the source of the trouble is the incorrect electromagnetic form factor, where we discovered the importance of the absorption

$$\phi_{em}(q) = \sqrt{\pi} Z \alpha_{em} \left(\frac{2}{q^2} + \frac{\mu_p - 1}{q}\right) F_A^{em}(q^2) e^{i\delta_{pA}} \otimes e^{-\frac{1}{2}\sigma_{tot}^{pp}T_A(b)}$$

$$\overset{0.15}{\underset{0}{}_{0}} \overset{0.15}{\underset{0}{}_{0}} \overset{0.15}{\underset{0}} \overset{0.15}{\underset{0}} \overset{0.15}{\underset{0}} \overset{0.15}{\underset{0}} \overset{0.15}{\underset{0}} \overset{0.15}{\underset{0}} \overset{0.15}{\underset{0}}{\underset{0}} \overset{0.15}{\underset{0}} \overset{0$$

Other corrections

To have a full description we should add other correction such as Gribov correction or nucleon-nucleon correlations.

Gribov corrections – effectively increase the pA cross section

B. Z. Kopeliovich, Int. J. Mod. Phys. A31 no. 28n29, (2016) 1645021, arXiv:1602.00298 [hep-ph].

B. Z. Kopeliovich, I. K. Potashnikova, and I. Schmidt, Phys. Rev. C73 (2006) 034901, arXiv:hep-ph/0508277 [hep-ph].

NN correlations – effectively reduce the nuclear thickness function

M. Alvioli, C. Ciofi degli Atti, B. Z. Kopeliovich, I. K. Potashnikova, and I. Schmidt, Phys. Rev. C81 (2010) 025204, arXiv:0911.1382 [nucl-th].

Further adjustments

Finally, we can make some adjustment by non-zero r_5

The result looks reasonable, good agreement at low and high *t*, good position of the cross points.

pC, pAI with absorption correction

pC, pAI with absorption correction

pC, pAl with absorption correction

pC: $r_5 = -0.031 \pm 0.001 - i0.384 \pm 0.017$

pAI: $r_5 = -0.074 \pm 0.002 - i0.376 \pm 0.029$

- Very different spin asymmetry for zero r_5
- *pC* and *pAI* closer to each other
- High sensitivity for real part of r_5

Remember result from *pp*:

 $r_5 = -0.0073 \pm 0.0032 - i0.0289 \pm 0.0128$

Conclusions

- We study the CNI region to see the effect of spin-flip hadronic amplitude.
- Indicated small r_5 in pp at RHIC does not report about Pomeron spinflip interaction, it is combination of Pomeron and Reggeon.
- We are interested into the nuclear target because of exclusion or suppression of Reggeons.
- Data for pC indicated higher r_5 then in pp. It can be interpreted that the pomeron r_5 is suppressed in pp. Similar situation for pAl.
- More complex situation in case of Gold target. Unexpected experimentally measured *t* dependence.
- Wrong signs found in the original formulas.
- A novel mechanism of interference of electromagnetic UPC with central hadronic collisions is proposed attempting at explanations of pAu data for CNI generated $A_N(t)$
- We included other expected correction. Finally we have good agreement at low and high *t*, good position of the crossing points.
- Nevertheless, an accurate determination of r_5 from *pAu* data is not possible so far.

Thank you for your attention

Acknowledgement

- This work was funded by Conycit PIA/ACT 1406 grant, Chile
- This work was funded by Conicyt PIA/Basal FB0821, Chile