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Prelude: LHC Run-II is in mission!

June 3, 2015: Run-II started at
Ecm = 6.5⊕ 6.5 = 13 TeV.
New era in science begun!

Reaching ≈ 50 fb−1/expt,
LHC is now in winter break,
will resume next April.
Run-II: till the end of 2018.

High Energy Physics IS at an extremely interesting time!

The completion of the Standard Model: With the discovery
of the Higgs boson, for the first time ever, we have a consis-
tent relativistic quantum-mechanical theory, weakly coupled,
unitary, renormalizable, vacuum (quasi?) stable, valid up to
an exponentially high scale!

Question: Where IS the next scale?

O(1 TeV)? MGUT? MPlanck?



Large spread of masses for elementary particles:

Large hierarchy: Electroweak scale ⇔ MPlanck? Conceptual.

Little hierarchy: Electroweak scale ⇔ Next scale at TeV? Observational.

Consult with the other excellent lectures.



That motivates us to the new energy frontier! ∗

• LHC (300 fb−1), HL-LHC (3 ab−1) lead to way: 2015−2030

• HE-LHC at 27 TeV, 15 ab−1 under consideration: start 2035−2040?

• ILC as a Higgs factory (250 GeV) and beyond: 2020−2030?

(250/500/1000 GeV, 250/500/1000 fb−1).

• FCCee (4×2.5 ab−1)/CEPC as a Higgs factory: 2028−2035?

• FCChh/SPPC/VLHC (100 TeV, 3 ab−1) to the energy frontier: 2040?

∗Nature News (July, 2014)



I-A. Colliders and Detectors

(0). A Historical Count:

Rutherford’s experiments were the first

to study matter structure: α
Gold foil target

α

discover the point-like nucleus:
dσ

dΩ
=

(αZ1Z2)2

4E2 sin4 θ/2

SLAC-MIT DIS experiments
e

Proton target
e′

discover the point-like structure of the proton:
dσ

dΩ
=

α2

4E2 sin4 θ/2

(

F1(x,Q2)

mp
sin2 θ

2
+

F2(x,Q2)

E − E′ cos2
θ

2

)

QCD parton model ⇒ 2xF1(x,Q
2) = F2(x,Q

2) =
∑

i

xfi(x)e
2
i .

Rutherford’s legendary method continues to date!



(A). High-energy Colliders:

To study the deepest layers of matter,

we need the probes with highest energies.
p⃗

E = hν
×

p⃗′

Two parameters of importance:

1. The energy: p⃗1

p⃗′1
p⃗2

p⃗′2

s ≡ (p1 + p2)
2 =

{

(E1 +E2)2 − (p⃗1 + p⃗2)2,
m2

1 +m2
2 + 2(E1E2 − p⃗1 · p⃗2).

Ecm ≡
√
s ≈

{

2E1 ≈ 2E2 in the c.m. frame p⃗1 + p⃗2 = 0,√
2E1m2 in the fixed target frame p⃗2 = 0.



2. The luminosity:

. . . . . . . .

Colliding beam
n1 n2

t = 1/f

L ∝ fn1n2/a,

(a some beam transverse profile) in units of #particles/cm2/s

⇒ 1033 cm−2s −1 = 1 nb−1 s−1 ≈ 10 fb−1/year.

Current and future high-energy colliders:

Hadron
√
s L δE/E f #/bunch L

Colliders (TeV) (cm−2s−1) (MHz) (1010) (km)

LHC Run (I) II (7,8) 13 (1032) 1033 0.01% 40 10.5 26.66
HL-LHC 14 7× 1034 0.013% 40 22 26.66

FCChh (SppC) 100 1.2× 1035 0.01% 40 10 100

e+e−
√
s L δE/E f polar. L

Colliders (TeV) (cm−2s−1) (MHz) (km)

ILC 0.5−1 2.5× 1034 0.1% 3 80,60% 14− 33
CEPC 0.25−0.35 2× 1034 0.13% 50-100
CLIC 3−5 ∼ 1035 0.35% 1500 80,60% 33− 53



(B). e+e− Colliders

The collisions between e− and e+ have major advantages:

• The system of an electron and a positron has zero charge,

zero lepton number etc.,

=⇒ it is suitable to create new particles after e+e− annihilation.

• With symmetric beams between the electrons and positrons,

the laboratory frame is the same as the c.m. frame,

=⇒ the total c.m. energy is fully exploited to reach the highest

possible physics threshold.

• With well-understood beam properties,

=⇒ the scattering kinematics is well-constrained.

• Backgrounds low and well-undercontrol:

For σ ≈ 10 pb ⇒ 0.1 Hz at 1034 cm−2s−1.

• Linear Collider: possible to achieve high degrees of beam polarizations,

=⇒ chiral couplings and other asymmetries can be effectively explored.



Disadvantages

• Large synchrotron radiation due to acceleration,

∆E ∼
1

R

(

E

me

)4
.

Thus, a multi-hundred GeV e+e− collider will have to be made

a linear accelerator.

• This becomes a major challenge for achieving a high luminosity

when a storage ring is not utilized;

beamsstrahlung severe.

CEPC/FCCee Higgs Factory

It has been discussed to build a circular e+e− collider

Ecm = 245 GeV−350 GeV

with multiple interaction points for very high luminosities.



(C). Hadron Colliders
LHC: the new high-energy frontier

“Hard” Scattering

proton

underlying event underlying event

outgoing parton

outgoing parton

initial-state
radiation

final-state
radiation

proton

Advantages

• Higher c.m. energy, thus higher energy threshold:√
S = 14 TeV: M2

new ∼ s = x1x2S ⇒ Mnew ∼ 0.3
√
S ∼ 4 TeV.



• Higher luminosity: 1034/cm2/s ⇒ 100 fb−1/yr.

Annual yield: 1B W±; 100M tt̄; 10M W+W−; 1M H0...

• Multiple (strong, electroweak) channels:

qq̄′, gg, qg, b̄b → colored; Q = 0,±1; J = 0,1,2 states;

WW, WZ, ZZ, γγ → IW = 0,1,2; Q = 0,±1,±2; J = 0,1,2 states.

Disadvantages

• Initial state unknown:

colliding partons unknown on event-by-event basis;

parton c.m. energy unknown: E2
cm ≡ s = x1x2S;

parton c.m. frame unknown.

⇒ largely rely on final state reconstruction.

• The large rate turns to a hostile environment:

⇒ Severe backgrounds!

Our primary job !



(D). Particle Detection:

The detector complex:

Utilize the strong and electromagnetic interactions

between detector materials and produced particles.

hadronic calorimeter

E-CAL

tracking

vertex detector

muon chambers

beam

pipe

( in B field )



What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

d = (βc τ)γ ≈ (300 µm)(
τ

10−12 s
) γ

• stable particles directly “seen”:

p, p̄, e±, γ

• quasi-stable particles of a life-time τ ≥ 10−10 s also directly “seen”:

n,Λ,K0
L, ..., µ±, π±,K±...

• a life-time τ ∼ 10−12 s may display a secondary decay vertex,

“vertex-tagged particles”:

B0,±, D0,±, τ±...

• short-lived not “directly seen”, but “reconstructable”:

π0, ρ0,±... , Z,W±, t,H...

• missing particles are weakly-interacting and neutral:

ν, χ̃0, GKK...



† For stable and quasi-stable particles of a life-time

τ ≥ 10−10 − 10−12 s, they show up as



A closer look:

Theorists should know:

For charged tracks : ∆p/p ∝ p,

typical resolution : ∼ p/(104 GeV).

For calorimetry : ∆E/E ∝
1√
E
,

typical resolution : ∼ (10%ecal, 50%hcal)/
√

E/GeV



† For vertex-tagged particles τ ≈ 10−12 s,

heavy flavor tagging: the secondary vertex:

Typical resolution: d0 ∼ 30− 50 µm or so

⇒ Better have two (non-collinear) charged tracks for a secondary vertex;

Or use the “impact parameter” w.r.t. the primary vertex.

For theorists: just multiply a “tagging efficiency”:

ϵb ∼ 70%; ϵc ∼ 40%; ϵτ ∼ 40%.



† For short-lived particles: τ < 10−12 s or so,

make use of final state kinematics to reconstruct the resonance.

† For missing particles:

make use of energy-momentum conservation to deduce their existence.

pi1 + pi2 =
obs.
∑

f

pf + pmiss.

But in hadron collisions, the longitudinal momenta unknown,

thus transverse direction only:

0 =
obs.
∑

f

p⃗f T + p⃗miss T .

often called “missing pT” (p/T ) or (conventionally) “missing ET” (E/T ).

Note: “missing ET” (MET) is conceptually ill-defined!

It is only sensible for massless particles: E/T =
√

p⃗2miss T +m2.



What we “see” for the SM particles
(no universality!)

Leptons Vetexing Tracking ECAL HCAL Muon Cham.
e± × p⃗ E × ×
µ± × p⃗

√ √
p⃗

τ±
√
×

√
e± h±; 3h± µ±

νe, νµ, ντ × × × × ×
Quarks
u, d, s ×

√ √ √
×

c → D
√ √

e± h’s µ±

b → B
√ √

e± h’s µ±

t → bW± b
√

e± b+ 2 jets µ±

Gauge bosons
γ × × E × ×
g ×

√ √ √
×

W± → ℓ±ν × p⃗ e± × µ±

→ qq̄′ ×
√ √

2 jets ×
Z0 → ℓ+ℓ− × p⃗ e± × µ±

→ qq̄ (b̄b)
√ √

2 jets ×
the Higgs boson

h0 → b̄b
√ √

e± h’s µ±

→ ZZ∗ × p⃗ e±
√

µ±

→ WW ∗ × p⃗ e±
√

µ±



How to search for new particles?

Leptons
(e, µ)

Photons

Taus

Jets
Missing ET

y98014_416dPauss rd

H→ WW→lνjj
H → ZZ→lljjZZH

H→WW→lνlν

H→WW→lνlν

→ →νν

H
 →

 Z
 Z

  
 →

 4
 le

p
to

n
s

*(
(

H γγ→

H ZZ→
0

n lept.+ x

∼
g → n jets + E

M
T

→ n leptons + X

q similar∼

H
+→τν

0H, A , h0 0→ττ
(H  ) γγ→h

0 0

g∼ → h + x0

χ   χ
∼ ∼0 +→

*( (

W'→lν

V,ρ    →WZTC
→ lνll

Z' → ll

unpredicted�
discovery

4l→

g, q →b jets + X
∼ ∼

b-�
Jet-tag

W
H
→
lν

b
b

ttH
→
lν

b
b
+

X

––

H ll→ ττZZ→



Homework:

Exercise 1.1: For a π0, µ−, or a τ− respectively, calculate its decay

length for E = 10 GeV.

Exercise 1.2: An event was identified to have a µ+µ− pair, along with

some missing energy. What can you say about the kinematics of the system

of the missing particles? Consider both an e+e− and a hadron collider.

Exercise 1.3: Electron and muon measurements: Estimate the relative

errors of energy-momentum measurements for an electron by an

electromagnetic calorimetry (∆E/E) and for a muon by tracking (∆p/p)

at energies of E = 50 GeV and 500 GeV, respectively.

Exercise 1.4: A 125 GeV Higgs boson will have a production cross section

of 20 pb at the 14 TeV LHC. How many events per year do you expect to

produce for the Higgs boson with an instantaneous luminosity 1033/cm2/s?

Do you expect it to be easy to observe and why?



I-B. Basic Techniques

and Tools for Collider Physics

(A). Scattering cross section
For a 2 → n scattering process:

σ(ab → 1+ 2+ ...n) =
1

2s

∑

|M|2 dPSn,

dPSn ≡ (2π)4 δ4

⎛

⎝P −
n
∑

i=1

pi

⎞

⎠Πn
i=1

1

(2π)3
d3p⃗i
2Ei

,

s = (pa + pb)
2 ≡ P2 =

⎛

⎝

n
∑

i=1

pi

⎞

⎠

2

,

where
∑

|M|2: dynamics (dimension 4− 2n);

dPSn: kinematics (Lorentz invariant, dimension 2n− 4.)

For a 1 → n decay process, the partial width in the rest frame:

Γ(a → 1 + 2+ ...n) =
1

2Ma

∑

|M|2 dPSn.

τ = Γ−1
tot = (

∑

f

Γf)
−1.



(B). Phase space and kinematics ∗

One-particle Final State a+ b → 1:

dPS1 ≡ (2π)
d3p⃗1
2E1

δ4(P − p1)

.
= π|p⃗1|dΩ1δ

3(P⃗ − p⃗1)
.
= 2π δ(s−m2

1).

where the first and second equal signs made use of the identities:

|p⃗|d|p⃗| = EdE,
d3p⃗

2E
=
∫

d4p δ(p2 −m2).

Kinematical relations:

P⃗ ≡ p⃗a + p⃗b = p⃗1, Ecm
1 =

√
s in the c.m. frame,

s = (pa + pb)
2 = m2

1.

The “dimensinless phase-space volume” is s(dPS1) = 2π.

∗E.Byckling, K. Kajantie: Particle Kinemaitcs (1973).



Two-particle Final State a+ b → 1+ 2:

dPS2 ≡
1

(2π)2
δ4 (P − p1 − p2)

d3p⃗1
2E1

d3p⃗2
2E2

.
=

1

(4π)2
|p⃗cm1 |
√
s

dΩ1 =
1

(4π)2
|p⃗cm1 |
√
s

d cos θ1dφ1

=
1

4π

1

2
λ1/2

(

1,
m2

1

s
,
m2

2

s

)

dx1dx2,

d cos θ1 = 2dx1, dφ1 = 2πdx2, 0 ≤ x1,2 ≤ 1,

The magnitudes of the energy-momentum of the two particles are
fully determined by the four-momentum conservation:

|p⃗cm1 | = |p⃗cm2 | =
λ1/2(s,m2

1,m
2
2)

2
√
s

, Ecm
1 =

s+m2
1 −m2

2

2
√
s

, Ecm
2 =

s+m2
2 −m2

1

2
√
s

,

λ(x, y, z) = (x− y − z)2 − 4yz = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The phase-space volume of the two-body is scaled down
with respect to that of the one-particle by a factor

dPS2

s dPS1
≈

1

(4π)2
.

just like a “loop factor”.



Consider a 2 → 2 scattering process pa + pb → p1 + p2,

the (Lorentz invariant) Mandelstam variables are defined as

s = (pa + pb)
2 = (p1 + p2)

2 = E2
cm,

t = (pa − p1)
2 = (pb − p2)

2 = m2
a +m2

1 − 2(EaE1 − pap1 cos θa1),

u = (pa − p2)
2 = (pb − p1)

2 = m2
a +m2

2 − 2(EaE2 − pap2 cos θa2),

s+ t+ u = m2
a +m2

b +m2
1 +m2

2.

The two-body phase space can be thus written as

dPS2 =
1

(4π)2
dt dφ1

s λ1/2
(

1,m2
a/s,m

2
b /s

).



Exercise 2.1: Assume that ma = m1 and mb = m2. Show that

t = −2p2cm(1− cos θ∗a1),

u = −2p2cm(1 + cos θ∗a1) +
(m2

1 −m2
2)

2

s
,

pcm = λ1/2(s,m2
1,m

2
2)/2

√
s is the momentum magnitude in the c.m. frame.

Note: t is negative-definite; t → 0 in the collinear limit.

Exercise 2.2: A particle of mass M decays to two particles

isotropically in its rest frame. What does the momentum distribution

look like in a frame in which the particle is moving with a speed βz?

Compare the result with your expectation for the shape change

for a basket ball.



Three-particle Final State a+ b → 1+ 2+ 3:

dPS3 ≡
1

(2π)5
δ4 (P − p1 − p2 − p3)

d3p⃗1
2E1

d3p⃗2
2E2

d3p⃗3
2E3

.
=

|p⃗1|2 d|p⃗1| dΩ1

(2π)3 2E1

1

(4π)2
|p⃗(23)2 |
m23

dΩ2

=
1

(4π)3
λ1/2

(

1,
m2

2

m2
23

,
m2

3

m2
23

)

2|p⃗1| dE1 dx2dx3dx4dx5.

d cos θ1,2 = 2dx2,4, dφ1,2 = 2πdx3,5, 0 ≤ x2,3,4,5 ≤ 1,

|p⃗cm1 |2 = |p⃗cm2 + p⃗cm3 |2 = (Ecm
1 )2 −m2

1,

m2
23 = s− 2

√
sEcm

1 +m2
1, |p⃗232 | = |p⃗233 | =

λ1/2(m2
23,m

2
2,m

2
3)

2m23
,

The particle energy spectrum is not monochromatic.

The maximum value (the end-point) for particle 1 in c.m. frame is

Emax
1 =

s+m2
1 − (m2 +m3)

2

2
√
s

, m1 ≤ E1 ≤ Emax
1 ,

|p⃗max
1 | =

λ1/2(s,m2
1, (m2 +m3)

2)

2
√
s

, 0 ≤ p1 ≤ pmax
1 .



With mi = 10, 20, 30,
√
s = 100 GeV.

More intuitive to work out the end-point for the kinetic energy,

– recall the direct neutrino mass bound in β-decay:

Kmax
1 = Emax

1 −m1 =
(
√
s−m1 −m2 −m3)(

√
s−m1 +m2 +m3)

2
√
s

.



In general, the 3-body phase space boundaries are non-trivial.

That leads to the “Dalitz Plots”.

One practically useful formula is:

Exercise 2.3: A particle of mass M decays to 3 particles M → abc.

Show that the phase space element can be expressed as

dPS3 =
1

27π3
M2dxadxb.

xi =
2Ei

M
, (i = a, b, c,

∑

i

xi = 2).

where the integration limits for ma = mb = mc = 0 are

0 ≤ xa ≤ 1, 1− xa ≤ xb ≤ 1.



Recursion relation P → 1+ 2+ 3...+ n:

p p
n

p
n−1, n

p
1 p

2  
. . . p

n−1

dPSn(P ; p1, ..., pn) = dPSn−1(P ; p1, ..., pn−1,n)

dPS2(pn−1,n; pn−1, pn)
dm2

n−1,n

2π
.

For instance,

dPS3 = dPS2(i)
dm2

prop

2π
dPS2(f).

This is generically true, but particularly useful

when the diagram has an s-channel particle propagation.



Breit-Wigner Resonance, the Narrow Width Approximation

An unstable particle of mass M and total width ΓV , the propagator is

R(s) =
1

(s−M2
V )2 + Γ2

VM2
V

.

Consider an intermediate state V ∗

a → bV ∗ → b p1p2.

By the reduction formula, the resonant integral reads

∫ (mmax
∗ )2=(ma−mb)

2

(mmin∗ )2=(m1+m2)2
dm2

∗ .

Variable change

tan θ =
m2

∗ −M2
V

ΓVMV
,

resulting in a flat integrand over θ
∫ (mmax

∗ )2

(mmin∗ )2

dm2
∗

(m2∗ −M2
V )2 + Γ2

VM2
V

=
∫ θmax

θmin

dθ

ΓVMV
.



In the limit

(m1 +m2) + ΓV ≪ MV ≪ ma −mb − ΓV ,

θmin = tan−1 (m1 +m2)
2 −M2

V

ΓVMV
→ −π,

θmax = tan−1 (ma −mb)
2 −M2

V

ΓVMV
→ 0,

then the Narrow Width Approximation

1

(m2∗ −M2
V )2 + Γ2

VM2
V

≈
π

ΓVMV
δ(m2

∗ −M2
V ).

Exercise 2.4: Consider a three-body decay of a top quark,

t → bW ∗ → b eν. Making use of the phase space recursion relation

and the narrow width approximation for the intermediate W boson,

show that the partial decay width of the top quark can be expressed as

Γ(t → bW ∗ → b eν) ≈ Γ(t → bW ) ·BR(W → eν).



(C). Matrix element: The dynamics

Properties of scattering amplitudes T (s, t, u)

• Analyticity: A scattering amplitude is analytical except:

simple poles (corresponding to single particle states, bound states etc.);

branch cuts (corresponding to thresholds).

• Crossing symmetry: A scattering amplitude for a 2 → 2 process is sym-

metric among the s-, t-, u-channels.

• Unitarity:

S-matrix unitarity leads to :

−i(T − T †) = TT †



Partial wave expansion for a+ b → 1+ 2:

M(s, t) = 16π
∞
∑

J=M

(2J +1)aJ(s)d
J
µµ′(cos θ)

aJ(s) =
1

32π

∫ 1

−1
M(s, t) dJµµ′(cos θ)d cos θ.

where µ = sa − sb, µ′ = s1 − s2, M = max(|µ|, |µ′|).

By Optical Theorem: σ = 1
s ImM(θ = 0) = 16π

s
∑∞

J=M(2J +1)|aJ(s)|2.

The partial wave amplitude have the properties:

(a). partial wave unitarity: Im(aJ) ≥ |aJ |2, or |Re(aJ)| ≤ 1/2,

(b). kinematical thresholds: aJ(s) ∝ βlii β
lf
f (J = L+ S).

⇒ well-known behavior: σ ∝ β
2lf+1
f .

Exercise 2.5: Appreciate the properties (a) and (b) by explicitly

calculating the helicity amplitudes for

e−Le
+
R → γ∗ → H−H+, e−Le

+
L,R → γ∗ → µ−Lµ

+
R , H−H+ → G∗ → H−H+.



(D). Calculational Tools

Traditional “Trace” Techniques: (Good for simple processes)

∗ You should be good at this — QFT course!
With algebraic symbolic manipulations:
∗ REDUCE, FORM, MATHEMATICA, MAPLE ...



Helicity Techniques: (Necessary for multiple particles)

More suitable for direct numerical evaluations.

∗ Hagiwara-Zeppenfeld: best for massless particles... (NPB, 1986)

∗ CalCul Method (by T.T. Wu et al., Parke-Mangano: Phys. Report);

∗ New techniques in loop calculations

(by Z.Bern, L.Dixon, W. Giele, N. Glover, K.Melnikov, F. Petriello ...)

∗ “Twisters” (string theory motivated organization)

(by Britto, F.Chachazo, B.Feng, E.Witten ...)

Exercise 2.6: Calculate the squared matrix element for
∑

|M(ff̄ → ZZ)|2,
in terms of s, t, u, in whatever technique you like.

Much more recent efforts:

∗ Nima Arkani-Hamed et al. (2015−2017, new formalism.)



Calculational packages:

• Monte Carlo packages for phase space integration:

(1) VEGAS by P. LePage: adaptive important-sampling MC

http://en.wikipedia.org/wiki/Monte-Carlo integration

(2) SAMPLE, RAINBOW, MISER ... (Rarely used.)

• Automated software for matrix elements:

(1) REDUCE — an interactive program designed for general algebraic

computations, including to evaluate Dirac algebra, an old-time program,

http://www.uni-koeln.de/REDUCE;

http://reduce-algebra.com. (Rarely used.)

(2) FORM by Jos Vermaseren: A program for large scale symbolic

manipulation, evaluate fermion traces automatically,

and perform loop calculations,s commercially available at

http://www.nikhef.nl/ form



(3) FeynCalc and FeynArts: Mathematica packages for algebraic

calculations in elementary particle physics.

http://www.feyncalc.org;

http://www.feynarts.de

(4) MadGraph: Helicity amplitude method for tree-level matrix elements

available upon request or

http://madgraph.hep.uiuc.edu



• Automated evaluation of cross sections:

(1) MadGraph/MadEvent and MadSUSY:

Generate Fortran codes on-line! http://madgraph.hep.uiuc.edu

(Now allows you to input new models.)

(2) CompHEP/CalHEP: computer program for calculation of elementary

particle processes in Standard Model and beyond. CompHEP has a built-in

numeric interpreter. So this version permits to make numeric calculation

without additional Fortran/C compiler. It is convenient for more or less

simple calculations.

— It allows your own construction of a Lagrangian model!

http://theory.npi.msu.su/k̃ryukov

(Now allows you to input new models.)

(3) GRACE and GRACE SUSY: squared matrix elements (Japan)

http://minami-home.kek.jp

(4) AlpGen: higher-order tree-level SM matrix elements (M. Mangano ...):

http://mlm.home.cern.ch/mlm/alpgen/



(5) SHERPA (F. Krauss et al.): (Gaining popularity)
Generate Fortran codes on-line! Merging with MC generators (see next).
http://www.sherpa-mc.de/

(6) Pandora by M. Peskin:
C++ based package for e+e−, including beam effects.
http://www-sldnt.slac.stanford.edu/nld/new/Docs/
Generators/PANDORA.htm
The program pandora is a general-purpose parton-level event generator
which includes beamstrahlung, initial state radiation, and full treatment
of polarization effects. (An interface to PYTHIA that produces fully
hadronized events is possible.)

• Cross sections at NLO packages: (Gaining popularity)
(1) MC(at)NLO (B. Webber et al.):
http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/
Combining a MC event generator with NLO calculations for QCD processes.

(2) MCFM (K. Ellis et al.):
http://mcfm.fnal.gov/
Parton-level, NLO processes for hadronic collisions.

(3) BlackHat (Z.Bern, L.Dixon, D.Kosover et al.):
http://blackhat.hepforge.org/
Parton-level, NLO processes to combine with Sherpa



• Numerical simulation packages: Monte Carlo Event Generators

Reading: http://www.sherpa-mc.de/

(1) PYTHIA:

PYTHIA is a Monte Carlo program for the generation of high-energy

physics events, i.e. for the description of collisions at high energies

between e+, e−, p and p̄ in various combinations.

They contain theory and models for a number of physics aspects,

including hard and soft interactions, parton distributions, initial and

final state parton showers, multiple interactions, fragmentation and decay.

— It can be combined with MadGraph and detector simulations.

http://www.thep.lu.se/ torbjorn/Pythia.html

Already made crucial contributions to Tevatron/LHC.

(2) HERWIG

HERWIG is a Monte Carlo program which simulates pp, pp̄

interactions at high energies. It has the most sophisticated perturbative

treatments, and possible NLO QCD matrix elements in parton showing.

http://hepwww.rl.ac.uk/theory/seymour/herwig/



(3) ISAJET

ISAJET is a Monte Carlo program which simulates pp, p̄p, and ee

interactions at high energies. It is largely obsolete.

ISASUSY option is still useful.

http://www.phy.bnl.gov/ isajet (Rarely used these days.)

• “Pretty Good Simulation” (PGS):

By John Conway: A simplified detector simulation,

mainly for theorists to estimate the detector effects.

http://www.physics.ucdavis.edu/ conway/research/software/pgs/pgs.html

PGS has been adopted for running with PYTHIA and MadGraph.

(but just a “toy”.)

• DELPHES: A modular framework for fast simulation of a generic collider

experiment.

http://arxiv.org/abs/1307.6346



Over all:



II. Physics at an e+e− Collider

(A.) Simple Formalism

Event rate of a reaction:

R(s) = σ(s)L, for constant L

= L
∫

dτ
dL(s, τ)

dτ
σ(ŝ), τ =

ŝ

s
.

As for the differential production cross section of two-particle a, b,

dσ(e+e− → ab)

d cos θ
=

β

32πs

∑

|M|2

where

• β = λ1/2(1,m2
a/s,m

2
b /s), is the speed factor for the out-going particles

in the c.m. frame, and pcm = β
√
s/2,

•
∑

|M|2 the squared matrix element, summed and averaged over quantum

numbers (like color and spins etc.)

• unpolarized beams so that the azimuthal angle trivially integrated out,



Total cross sections and event rates for SM processes:



(B). Resonant production: Breit-Wigner formula

1

(s−M2
V )2 + Γ2

VM2
V

If the energy spread δ
√
s ≪ ΓV , the line-shape mapped out:

σ(e+e− → V ∗ → X) =
4π(2j +1)Γ(V → e+e−)Γ(V → X)

(s−M2
V )

2 + Γ2
VM

2
V

s

M2
V

,

If δ
√
s ≫ ΓV , the narrow-width approximation:

1

(s−M2
V )

2 + Γ2
VM

2
V

→
π

MVΓV
δ(s−M2

V ),

σ(e+e− → V ∗ → X) =
2π2(2j +1)Γ(V → e+e−)BF (V → X)

M2
V

dL(ŝ = M2
V )

d
√
ŝ

Exercise 3.1: sketch the derivation of these two formulas,

assuming a Gaussian distribution for

dL

d
√
ŝ
=

1√
2π ∆

exp[
−(

√
ŝ−

√
s)2

2∆2
].



Note: Away from resonance

For an s-channel or a finite-angle scattering:

σ ∼
1

s
.

For forward (co-linear) scattering:

σ ∼
1

M2
V

ln2
s

M2
V

.



(C). Fermion production:

Common processes: e−e+ → ff̄ .
For most of the situations, the scattering matrix element can be casted
into a V ±A chiral structure of the form (sometimes with the help of Fierz
transformations)

M =
e2

s
Qαβ [v̄e+(p2)γ

µPαue−(p1)] [ψ̄f(q1)γµPβψ
′
f̄(q2)],

where P∓ = (1 ∓ γ5)/2 are the L,R chirality projection operators, and
Qαβ are the bilinear couplings governed by the underlying physics of the
interactions with the intermediate propagating fields.
With this structure, the scattering matrix element squared:

∑

|M|2 =
e4

s2
[

(|QLL|2 + |QRR|2) uiuj + (|QLL|2 + |QRL|2) titj

+ 2Re(Q∗
LLQLR +Q∗

RRQRL)mfmf̄s
]

,

where ti = t−m2
i = (p1 − q1)

2 −m2
i and ui = u−m2

i = (p1 − q2)
2 −m2

i .

Exercise 3.2: Verify this formula.



(D). Typical size of the cross sections:

• The simplest reaction

σ(e+e− → γ∗ → µ+µ−) ≡ σpt =
4πα2

3s
.

In fact, σpt ≈ 100 fb/(
√
s/TeV)2 has become standard units to measure

the size of cross sections.

• The Z resonance prominent (or other MV ),

• At the ILC
√
s = 500 GeV,

σ(e+e− → e+e−) ∼ 100σpt ∼ 40 pb.

(anglular cut dependent.)

σpt ∼ σ(ZZ) ∼ σ(tt̄) ∼ 400 fb;

σ(u, d, s) ∼ 9σpt ∼ 3.6 pb;

σ(WW ) ∼ 20σpt ∼ 8 pb.

and

σ(ZH) ∼ σ(WW → H) ∼ σpt/4 ∼ 100 fb;

σ(WWZ) ∼ 0.1σpt ∼ 40 fb.



(E). Gauge boson radiation:

A qualitatively different process is initiated from gauge boson radiation,

typically off fermions:

f
f

a

pγ / f

X

’

The simplest case is the photon radiation off an electron, like:

e+e− → e+, γ∗e− → e+e−.

The dominant features are due to the result of a t-channel singularity,

induced by the collinear photon splitting:

σ(e−a → e−X) ≈
∫

dx Pγ/e(x) σ(γa → X).

The so called the effective photon approximation.



For an electron of energy E, the probability of finding a collinear photon

of energy xE is given by

Pγ/e(x) =
α

2π

1+ (1− x)2

x
ln

E2

m2
e
,

known as the Weizsäcker-Williams spectrum.

Exercise 3.3: Try to derive this splitting function.

We see that:

• me enters the log to regularize the collinear singularity;

• 1/x leads to the infrared behavior of the photon;

• This picture of the photon probability distribution is also valid for other

photon spectrum:

Based on the back-scattering laser technique, it has been proposed to

produce much harder photon spectrum, to construct a “photon collider”...



(massive) Gauge boson radiation:

A similar picture may be envisioned for the electroweak massive gauge

bosons, V = W±, Z.

Consider a fermion f of energy E, the probability of finding a (nearly)

collinear gauge boson V of energy xE and transverse momentum pT (with

respect to p⃗f) is approximated by

PT
V/f(x, p

2
T ) =

g2V + g2A
8π2

1 + (1− x)2

x

p2T
(p2T + (1− x)M2

V )2
,

PL
V/f(x, p

2
T ) =

g2V + g2A
4π2

1− x

x

(1− x)M2
V

(p2T + (1− x)M2
V )2

.

Although the collinear scattering would not be a good approximation un-

til reaching very high energies
√
s ≫ MV , it is instructive to consider the

qualitative features.



(F). Recoil mass technique:

One of the most important techniques, that distinguishes an e+e− collisions

from hadronic collisions.

Consider a process:
e+ + e− → V +X,

where V: a (bunch of) visible particle(s); X: unspecified.

Then:
pe+ + pe− = pV + pX, (pe+ + pe− − pV )2 = p2X,

M2
X = (pe+ + pe− − pV )2 = s+M2

V − 2
√
sEV .

One thus obtain the “model-independent” inclusive measurements

a. mass of X by the recoil mass peak

b. coupling of X by simple event-count at the peak



The key point for a Higgs factory: e+ + e− → ff̄ + h.

Then: M2
h = (pe+ + pe− − pf − pf̄)

2 = s+M2
V − 2

√
sEff̄ .

Model-independent, kinematical selection of signal events!



(G). Beam polarization:

One of the merits for an e+e− linear collider is the possible high polarization

for both beams.

Consider first the longitudinal polarization along the beam line direction.

Denote the average e± beam polarization by PL
±, with PL

± = −1 purely

left-handed and +1 purely right-handed.

The polarized squared matrix element, based on the helicity amplitudes

Mσe−σe+:

∑

|M|2 =
1

4
[(1− PL

−)(1− PL
+)|M−−|2 + (1− PL

−)(1 + PL
+)|M−+|2

+(1+ PL
−(1− PL

+)|M+−|2 + (1+ PL
−)(1 + PL

+)|M++|2].

Since the electroweak interactions of the SM and beyond are chiral:

Certain helicity amplitudes can be suppressed or enhanced by properly

choosing the beam polarizations: e.g., W± exchange ...



Furthermore, it is possible to produce transversely polarized beams with

the help of a spin-rotator.

If the beams present average polarizations with respect to a specific direc-

tion perpendicular to the beam line direction, −1 < PT
± < 1, then there will

be one additional term in the limit me → 0,

1

4
2 PT

−PT
+ Re(M−+M∗

+−).

The transverse polarization is particularly important when

the interactions produce an asymmetry in azimuthal angle, such as the

effect of CP violation.



III. Hadron Collider Physics

(A). New HEP frontier: the LHC
The Higgs discovery and more excitements ahead ...

ATLAS (90m underground) CMS



LHC Event rates for various SM processes:

1034/cm2/s ⇒ 100 fb−1/yr.

Annual yield # of events = σ × Lint:

10B W±; 100M tt̄; 10M W+W−; 1M H0...

Discovery of the Higgs boson opened a new chapter of HEP!



Theoretical challenges:

Unprecedented energy frontier

(a) Total hadronic cross section: Non-perturbative.

The order of magnitude estimate:

σpp = πr2eff ≈ π/m2
π ∼ 120 mb.

Energy-dependence?

σ(pp)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

≈ 21.7 ( s
GeV2)

0.0808 mb, Empirical relation

< π
m2
π

ln2 s
s0
, Froissart bound.

(b) Perturbative hadronic cross section:

σpp(S) =
∫

dx1dx2P1(x1, Q
2)P2(x2, Q

2) σ̂parton(s).

• Accurate (higher orders) partonic cross sections σ̂parton(s).

• Parton distribution functions to the extreme (density):

Q2 ∼ (a few TeV )2, x ∼ 10−3 − 10−6.



Experimental challenges:

• The large rate turns to a hostile environment:

≈ 1 billion event/sec: impossible read-off !

≈ 1 interesting event per 1,000,000: selection (triggering).

≈ 25 overlapping events/bunch crossing:

. . . . . . . .

Colliding beam
n1 n2

t = 1/f

⇒ Severe backgrounds!



Triggering thresholds:

ATLAS
Objects η pT (GeV)

µ inclusive 2.4 6 (20)
e/photon inclusive 2.5 17 (26)

Two e’s or two photons 2.5 12 (15)
1-jet inclusive 3.2 180 (290)

3 jets 3.2 75 (130)
4 jets 3.2 55 (90)

τ/hadrons 2.5 43 (65)
/ET 4.9 100

Jets+/ET 3.2, 4.9 50,50 (100,100)

(η = 2.5 ⇒ 10◦; η = 5 ⇒ 0.8◦.)

With optimal triggering and kinematical selections:

pT ≥ 30− 100 GeV, |η| ≤ 3− 5; /ET ≥ 100 GeV.



(B). Special kinematics for hadron colliders

Hadron momenta: PA = (EA,0,0, pA), PB = (EA,0,0,−pA),

The parton momenta: p1 = x1PA, p2 = x2PB.

Then the parton c.m. frame moves randomly, even by event:

βcm =
x1 − x2
x1 + x2

, or :

ycm =
1

2
ln

1+ βcm
1− βcm

=
1

2
ln

x1
x2

, (−∞ < ycm < ∞).

The four-momentum vector transforms as
(

E′

p′z

)

=

(

γ −γ βcm
−γ βcm γ

)(

E
pz

)

=

(

cosh ycm − sinh ycm
− sinh ycm cosh ycm

)(

E
pz

)

.

This is often called the “boost”.



One wishes to design final-state kinematics invariant under the boost:

For a four-momentum p ≡ pµ = (E, p⃗),

ET =
√

p2T +m2, y =
1

2
ln

E + pz
E − pz

,

pµ = (ET cosh y, pT sinφ, pT cosφ, ET sinh y),

d3p⃗

E
= pTdpTdφ dy = ETdETdφ dy.

Due to random boost between Lab-frame/c.m. frame event-by-event,

y′ =
1

2
ln

E′ + p′z
E′ − p′z

=
1

2
ln

(1− βcm)(E + pz)

(1 + βcm)(E − pz)
= y − ycm.

In the massless limit, rapidity → pseudo-rapidity:

y → η =
1

2
ln

1+ cos θ

1− cos θ
= lncot

θ

2
.

Exercise 4.1: Verify all the above equations.



The “Lego” plot:

A CDF di-jet event on a lego plot in the η − φ plane.

φ,∆y = y2 − y1 is boost-invariant.

Thus the “separation” between two particles in an event

∆R =
√

∆φ2 +∆y2 is boost-invariant,

and lead to the “cone definition” of a jet.



(C). Characteristic observables:
Crucial for uncovering new dynamics.

Selective experimental events

=⇒ Characteristic kinematical observables

(spatial, time, momentaum phase space)

=⇒ Dynamical parameters

(masses, couplings)

Energy momentum observables =⇒ mass parameters

Angular observables =⇒ nature of couplings;

Production rates, decay branchings/lifetimes =⇒ interaction strengths.



(D). Kinematical features:
(a). s-channel singularity: bump search we do best.

• invariant mass of two-body R → ab : m2
ab = (pa + pb)

2 = M2
R.

combined with the two-body Jacobian peak in transverse momentum:

dσ̂

dm2
ee dp2eT

∝
ΓZMZ

(m2
ee −M2

Z)
2 + Γ2

ZM
2
Z

1

m2
ee

√

1− 4p2eT /m
2
ee
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• “transverse” mass of two-body W− → e−ν̄e :

m2
eν T = (EeT + EνT)

2 − (p⃗eT + p⃗νT )
2

= 2EeTE
miss

T (1− cosφ) ≤ m2
eν.
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Exercise 5.1: For a two-body final state kinematics, show that

dσ̂

dpeT
=

4peT

s
√

1− 4p2eT /s

dσ̂

d cos θ∗
.

where peT = pe sin θ∗ is the transverse momentum and θ∗ is the polar angle

in the c.m. frame. Comment on the apparent singularity at p2eT = s/4.

Exercise 5.2: Show that for an on-shell decay W− → e−ν̄e :

m2
eν T ≡ (EeT + EνT)

2 − (p⃗eT + p⃗νT )
2 ≤ m2

eν.

Exercise 5.3: Show that if W/Z has some transverse motion, δPV , then:

p′eT ∼ peT [1 + δPV /MV ],

m′2
eν T ∼ m2

eν T [1− (δPV /MV )2],

m
′2
ee = m2

ee.



• H0 → W+W− → j1j2 e−ν̄e :

cluster transverse mass (I):

m2
WW T = (EW1T + EW2T)

2 − (p⃗jjT + p⃗eT + p⃗ miss
T )2

= (

√

p2jjT +M2
W +

√

p2eνT +M2
W )2 − (p⃗jjT + p⃗eT + p⃗ miss

T )2 ≤ M2
H.

where p⃗ miss
T ≡ p⃗/T = −

∑

obs p⃗ obs
T .

H
W

W

• H0 → W+W− → e+νe e−ν̄e :

“effecive” transverse mass:

m2
eff T = (Ee1T + Ee2T + E miss

T )2 − (p⃗e1T + p⃗e2T + p⃗ miss
T )2

meff T ≈ Ee1T +Ee2T +E miss
T

cluster transverse mass (II):

m2
WW C =

(

√

p2T,ℓℓ+M2
ℓℓ+ p/T

)2

− (p⃗T,ℓℓ+ p⃗/T )
2

mWW C ≈
√

p2T,ℓℓ+M2
ℓℓ+ p/T



MWW invariant mass (WW fully reconstructable): - - - - - - - -

MWW, T transverse mass (one missing particle ν): —————

Meff, T effetive trans. mass (two missing particles): - - - - - - -

MWW, C cluster trans. mass (two missing particles): ————–

YOU design an optimal variable/observable for the search.



• cluster transverse mass (III):

H0 → τ+τ− → µ+ ν̄τ νµ, ρ− ντ

A lot more complicated with (many) more ν′s? H

Not really!

τ+τ− ultra-relativistic, the final states from a τ decay highly collimated:

θ ≈ γ−1
τ = mτ/Eτ = 2mτ/mH ≈ 1.5◦ (mH = 120 GeV).

We can thus take

p⃗τ+ = p⃗µ+ + p⃗ ν′s
+ , p⃗ ν′s

+ ≈ c+p⃗µ+.

p⃗τ− = p⃗ρ− + p⃗ ν′s
− , p⃗ ν′s

− ≈ c−p⃗ρ−.

where c± are proportionality constants, to be determined.

This is applicable to any decays of fast-moving particles, like

T → Wb → ℓν, b.



Experimental measurements: pρ−, pµ+, p/T :

c+(pµ+)x + c−(pρ−)x = (p/T)x,

c+(pµ+)y + c−(pρ−)y = (p/T)y.

Unique solutions for c± exist if

(pµ+)x/(pµ+)y ≠ (pρ−)x/(pρ−)y.

Physically, the τ+ and τ− should form a finite angle,

or the Higgs should have a non-zero transverse momentum.
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(b). Two-body versus three-body kinematics

• Energy end-point and mass edges:

utilizing the “two-body kinematics”

Consider a simple case:

e+e− → µ̃+R µ̃−R
with two− body decays : µ̃+R → µ+χ̃0, µ̃−R → µ−χ̃0.

In the µ̃+R -rest frame: E0
µ =

M2
µ̃R

−m2
χ

2Mµ̃R
.

In the Lab-frame:

(1− β)γE0
µ ≤ Elab

µ ≤ (1 + β)γE0
µ

with β =
(

1− 4M2
µ̃R

/s
)1/2

, γ = (1− β)−1/2.

Energy end-point: Elab
µ ⇒ M2

µ̃R
−m2

χ.

Mass edge: mmax
µ+µ−

=
√
s− 2mχ.

Same idea can be applied to hadron colliders ...



Consider a squark cascade decay:

1st edge : Mmax(ℓℓ) = Mχ02
−Mχ01

;

2nd edge : Mmax(ℓℓj) = Mq̃ −Mχ01
.

Exercise 5.4: Verify these relations.



0

50

100

150

200

0 50 100 150

mll (GeV)
d
σ

/d
m

ll
 (

E
v

e
n

ts
/1

0
0

fb
-1

/0
.3

7
5

G
e

V
)

(a)

0

100

200

300

400

0 200 400 600 800 1000

mllq (GeV)

d
σ

/d
m

ll
q
 (

E
v

e
n

ts
/1

0
0

fb
-1

/5
G

e
V

)

(b)

0

100

200

300

400

0 200 400 600 800 1000

High mlq (GeV)

d
σ

/d
m

lq
 (

E
v

e
n

ts
/1

0
0

fb
-1

/5
G

e
V

)

(c1)

0

200

400

600

0 200 400 600 800 1000

Low mlq (GeV)
d
σ

/d
m

lq
 (

E
v

e
n

ts
/1

0
0

fb
-1

/5
G

e
V

)
(c2)

0

50

100

150

0 200 400 600 800 1000

mllq (GeV)

d
σ

/d
m

ll
q
 (

E
v

e
n

ts
/1

0
0

fb
-1

/5
G

e
V

)

(d)

0

20

40

60

80

100

0 200 400 600 800 1000

mhq (GeV)

d
σ

/d
m

h
q
 (

E
v

e
n

ts
/1

0
0

fb
-1

/5
G

e
V

)

(e)



(c). t-channel singularity: splitting.

• Gauge boson radiation off a fermion:

The familiar Weizsäcker-Williams approximation

f
f

a

pγ / f

X

’

σ(fa → f ′X) ≈
∫

dx dp2T Pγ/f(x, p
2
T ) σ(γa → X),

Pγ/e(x, p
2
T ) =

α

2π

1+ (1− x)2

x

(

1

p2T

)

|Eme.

† The kernel is the same as q → qg∗ ⇒ generic for parton splitting;

† The form dp2T/p
2
T → ln(E2/m2

e) reflects the collinear behavior.



• Generalize to massive gauge bosons:

PT
V/f(x, p

2
T ) =

g2V + g2A
8π2

1 + (1− x)2

x

p2T
(p2T + (1− x)M2

V )2
,

PL
V/f(x, p

2
T ) =

g2V + g2A
4π2

1− x

x

(1− x)M2
V

(p2T + (1− x)M2
V )2

.

Special kinematics for massive gauge boson fusion processes:

For the accompanying jets,

At low-pjT ,

p2jT ≈ (1− x)M2
V

Ej ∼ (1− x)Eq

}

forward jet tagging

At high-pjT ,

dσ(VT )
dp2jT

∝ 1/p2jT
dσ(VL)
dp2jT

∝ 1/p4jT

⎫

⎪

⎪

⎬

⎪

⎪

⎭

central jet vetoing

has become important tools for Higgs searches, single-top signal etc.



(E). Charge forward-backward asymmetry AFB:

The coupling vertex of a vector boson Vµ to an arbitrary fermion pair f

i
L,R
∑

τ
gfτ γ

µ Pτ → crucial to probe chiral structures.

The parton-level forward-backward asymmetry is defined as

Ai,f
FB ≡

NF −NB

NF +NB
=

3

4
AiAf ,

Af =
(gfL)

2 − (gfR)
2

(gfL)
2 + (gfR)

2
.

where NF (NB) is the number of events in the forward (backward) direction

defined in the parton c.m. frame relative to the initial-state fermion p⃗i.



At hadronic level:

ALHC
FB =

∫

dx1
∑

q A
q,f
FB

(

Pq(x1)Pq̄(x2)− Pq̄(x1)Pq(x2)
)

sign(x1 − x2)
∫

dx1
∑

q

(

Pq(x1)Pq̄(x2) + Pq̄(x1)Pq(x2)
) .

Perfectly fine for Z/Z ′-type:

In pp̄ collisions, p⃗proton is the direction of p⃗quark.

In pp collisions, however, what is the direction of p⃗quark?

It is the boost-direction of ℓ+ℓ−.



How about W±/W ′±(ℓ±ν)-type?

In pp̄ collisions, p⃗proton is the direction of p⃗quark,

AND ℓ+ (ℓ−) along the direction with q̄ (q) ⇒ OK at the Tevatron,

But: (1). cann’t get the boost-direction of ℓ±ν system;

(2). Looking at ℓ± alone, no insight for WL or WR!

In pp̄ collisions: (1). a reconstructable system

(2). with spin correlation → only tops W ′ → t̄b → ℓ±ν b̄:
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(F). CP asymmetries ACP :

To non-ambiguously identify CP -violation effects,

one must rely on CP-odd variables.

Definition: ACP vanishes if CP-violation interactions do not exist

(for the relevant particles involved).

This is meant to be in contrast to an observable:

that’d be modified by the presence of CP-violation,

but is not zero when CP-violation is absent.

e.g. M(χ± χ0), σ(H0, A0), ...

Two ways:

a). Compare the rates between a process and its CP-conjugate process:

R(i → f)−R(̄i → f̄)

R(i → f) +R(̄i → f̄)
, e.g.

Γ(t → W+q)− Γ(t̄ → W−q̄)

Γ(t → W+q) + Γ(t̄ → W−q̄)
.



b). Construct a CP-odd kinematical variable for an initially CP-eigenstate:

M ∼ M1 +M2 sin θ,

ACP = σF − σB =
∫ 1

0

dσ

d cos θ
d cos θ −

∫ 0

−1

dσ

d cos θ
d cos θ

E.g. 1: H → Z(p1)Z
∗(p2) → e+(q1)e

−(q2), µ+µ−

Z 
µ
( p

1
)

Z 
ν
( p

2
)

h

Γµν
( p

1
, p

2
)

Γµν(p1, p2) = i
2

v
h[a M2

Zg
µν+b (pµ1p

ν
2 − p1 · p2gµν)+b̃ ϵµνρσp1ρp2σ]

a = 1, b = b̃ = 0 for SM.

In general, a, b, b̃ complex form factors,

describing new physics at a higher scale.



For H → Z(p1)Z
∗(p2) → e+(q1)e

−(q2), µ+µ−, define:

OCP ∼ (p⃗1 − p⃗2) · (q⃗1 × q⃗2),

or cos θ =
(p⃗1 − p⃗2) · (q⃗1 × q⃗2)

|p⃗1 − p⃗2||q⃗1 × q⃗2)|
.

E.g. 2: H → t(pt)t̄(pt̄) → e+(q1)ν1b1, e−(q2)ν2b2.

−
mt

v
t̄(a+ bγ5)t H

OCP ∼ (p⃗t − p⃗t̄) · (p⃗e+ × p⃗e−).

thus define an asymmetry angle.


