Collider Physics

- From basic knowledge to new physics searches

The $5^{\text {th }}$ Chilean School of High Energy Physics Universidad Técnica Federico Santa Mara, Valparaiso Jan. 15-19, 2018
Tao Han, University of Pittsburgh [than(at)pitt.edu]

Contents:

Lecture I:
Basics of Collider physics Lecture II:
Physics at an $e^{+} e^{-}$Collider
Lecture III:
Physics at Hadron Colliders
(and New Physics Searches)

Prelude: LHC Run-II is in mission!

June 3, 2015: Run-II started at $E_{c m}=6.5 \oplus 6.5=13 \mathrm{TeV}$.
New era in science begun!
Reaching $\approx 50 \mathrm{fb}^{-1} /$ expt, LHC is now in winter break, will resume next April. Run-II: till the end of 2018.

High Energy Physics IS at an extremely interesting timent The completion of the Standard Model: With the discovery of the Higgs boson, for the first time ever, we have a consistent relativistic quantum-mechanical theory, weakly coupled, unitary, renormalizable, vacuum (quasi?) stable, valid up to an exponentially high scale!

Question: Where IS the next scale?
$\mathcal{O}(1 \mathrm{TeV}) ? M_{G U T} ? M_{\text {Planck }}$?

Large spread of masses for elementary particles:

Large hierarchy: Electroweak scale $\Leftrightarrow M_{\text {Planck }}$? Conceptual.
Little hierarchy: Electroweak scale \Leftrightarrow Next scale at TeV? Observational.

Consult with the other excellent lectures.

That motivates us to the new energy frontier! * COLLISION COURSE
Particle physicists around the world are designing colliders that are much larger in size than the Large Hadron Collider at CERN, Europe's particle-physics laboratory.

- LHC (300 fb ${ }^{-1}$), HL-LHC ($3 \mathrm{ab}^{-1}$) lead to way: 2015-2030
- HE-LHC at $27 \mathrm{TeV}, 15 \mathrm{ab}^{-1}$ under consideration: start 2035-2040?
- ILC as a Higgs factory (250 GeV) and beyond: 2020-2030? (250/500/1000 GeV, 250/500/1000 fb ${ }^{-1}$).
- $\mathrm{FCC}_{e e}\left(4 \times 2.5 \mathrm{ab}^{-1}\right) /$ CEPC as a Higgs factory: 2028-2035?
- $\mathrm{FCC}_{h h} /$ SPPC/VLHC (100 TeV, $3 \mathrm{ab}^{-1}$) to the energy frontier: 2040? *Nature News (July, 2014)

I-A. Colliders and Detectors

(0). A Historical Count:

Rutherford's experiments were the first to study matter structure:
 discover the point-like nucleus:

$$
\frac{d \sigma}{d \Omega}=\frac{\left(\alpha Z_{1} Z_{2}\right)^{2}}{4 E^{2} \sin ^{4} \theta / 2}
$$

SLAC-MIT DIS experiments $\xrightarrow{e} \quad \stackrel{e^{\prime}}{\text { umm }}$ Proton target discover the point-like structure of the proton:

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \theta / 2}\left(\frac{F_{1}\left(x, Q^{2}\right)}{m_{p}} \sin ^{2} \frac{\theta}{2}+\frac{F_{2}\left(x, Q^{2}\right)}{E-E^{\prime}} \cos ^{2} \frac{\theta}{2}\right) \\
& \text { QCD parton model } \Rightarrow 2 x F_{1}\left(x, Q^{2}\right)=F_{2}\left(x, Q^{2}\right)=\sum_{i} x f_{i}(x) e_{i}^{2} .
\end{aligned}
$$

Rutherford's legendary method continues to date!

(A). High-energy Colliders:

To study the deepest layers of matter,
we need the probes with highest energies.
 Two parameters of importance:

1. The energy:

$$
\begin{aligned}
s & \equiv\left(p_{1}+p_{2}\right)^{2}=\left\{\begin{array}{l}
\left(E_{1}+E_{2}\right)^{2}-\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}, \\
m_{1}^{2}+m_{2}^{2}+2\left(E_{1} E_{2}-\vec{p}_{1} \cdot \vec{p}_{2}\right)
\end{array}\right. \\
E_{c m} & \equiv \sqrt{s} \approx \begin{cases}2 E_{1} \approx 2 E_{2} & \text { in the c.m. frame } \vec{p}_{1}+\vec{p}_{2}=0, \\
\sqrt{2 E_{1} m_{2}} & \text { in the fixed target frame } \overrightarrow{\mathrm{p}}_{2}=0 .\end{cases}
\end{aligned}
$$

2. The luminosity:

Colliding beam

$$
\mathcal{L} \propto f n_{1} n_{2} / a
$$

(a some beam transverse profile) in units of \#particles/cm²/s

$$
\Rightarrow 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=1 \mathrm{nb}^{-1} \mathrm{~s}^{-1} \approx 10 \mathrm{fb}^{-1} / \text { year } .
$$

Current and future high-energy colliders:

Hadron Colliders	\sqrt{s} (TeV)	\mathcal{L} $\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$	$\delta E / E$	f (MHz)	$\# /$ bunch $\left(10^{10}\right)$	L (km)
LHC Run (I) II HL-LHC	$(7,8) 13$ 14	$\left(10^{32}\right) 10^{33}$ 7×10^{34}	0.01% 0.013%	40	10.5	26.66
FCC $_{h h}(\mathrm{SppC})$	100	1.2×10^{35}	0.01%	40	22	26.66
$e^{+} e^{-}$ Colliders	\sqrt{s}					
(TeV)	$\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$	$\delta E / E$	f (MHz)	polar.	L (km)	
ILC	$0.5-1$	2.5×10^{34}	0.1%	3	$80,60 \%$	$14-33$
CEPC	$0.25-0.35$	2×10^{34}	0.13%			$50-100$
CLIC	$3-5$	$\sim 10^{35}$	0.35%	1500	$80,60 \%$	$33-53$

(B). $e^{+} e^{-}$Colliders

The collisions between e^{-}and e^{+}have major advantages:

- The system of an electron and a positron has zero charge, zero lepton number etc.,
\Longrightarrow it is suitable to create new particles after $e^{+} e^{-}$annihilation.
- With symmetric beams between the electrons and positrons, the laboratory frame is the same as the c.m. frame,
\Longrightarrow the total c.m. energy is fully exploited to reach the highest possible physics threshold.
- With well-understood beam properties,
\Longrightarrow the scattering kinematics is well-constrained.
- Backgrounds low and well-undercontrol:

$$
\text { For } \sigma \approx 10 \mathrm{pb} \Rightarrow 0.1 \mathrm{~Hz} \text { at } 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

- Linear Collider: possible to achieve high degrees of beam polarizations, \Longrightarrow chiral couplings and other asymmetries can be effectively explored.

Disadvantages

- Large synchrotron radiation due to acceleration,

$$
\Delta E \sim \frac{1}{R}\left(\frac{E}{m_{e}}\right)^{4}
$$

Thus, a multi-hundred $\mathrm{GeV} e^{+} e^{-}$collider will have to be made a linear accelerator.

- This becomes a major challenge for achieving a high luminosity when a storage ring is not utilized; beamsstrahlung severe.

CEPC/FCC ${ }_{e e}$ Higgs Factory

It has been discussed to build a circular $e^{+} e^{-}$collider

$$
E_{c m}=245 \mathrm{GeV}-350 \mathrm{GeV}
$$

with multiple interaction points for very high luminosities.

(C). Hadron Colliders
 LHC: the new high-energy frontier

- Higher c.m. energy, thus higher energy threshold:
$\sqrt{S}=14 \mathrm{TeV}: \quad M_{n e w}^{2} \sim s=x_{1} x_{2} S \Rightarrow M_{\text {new }} \sim 0.3 \sqrt{S} \sim 4 \mathrm{TeV}$.
- Higher luminosity: $10^{34} / \mathrm{cm}^{2} / \mathrm{s} \Rightarrow 100 \mathrm{fb}^{-1} / \mathrm{yr}$.

$$
\text { Annual yield: 1B } W^{ \pm} ; 100 \mathrm{M} t \bar{t} ; 10 \mathrm{M} W^{+} W^{-} ; 1 \mathrm{M} H^{0} \ldots
$$

- Multiple (strong, electroweak) channels:

```
\(q \bar{q}^{\prime}, g g, q g, b \bar{b} \rightarrow\) colored; \(Q=0, \pm 1 ; \quad J=0,1,2\) states;
\(W W, W Z, Z Z, \gamma \gamma \rightarrow I_{W}=0,1,2 ; \quad Q=0, \pm 1, \pm 2 ; \quad J=0,1,2\) states.
```


Disadvantages

- Initial state unknown:
colliding partons unknown on event-by-event basis;
parton c.m. energy unknown: $E_{c m}^{2} \equiv s=x_{1} x_{2} S$;
parton c.m. frame unknown.
\Rightarrow largely rely on final state reconstruction.
- The large rate turns to a hostile environment:
\Rightarrow Severe backgrounds!
Our primary job!

(D). Particle Detection:

The detector complex:
Utilize the strong and electromagnetic interactions between detector materials and produced particles.

What we "see" as particles in the detector: (a few meters)
For a relativistic particle, the travel distance:

$$
d=(\beta c \tau) \gamma \approx(300 \mu m)\left(\frac{\tau}{10^{-12 s}}\right) \gamma
$$

- stable particles directly "seen":

$$
p, \bar{p}, e^{ \pm}, \gamma
$$

- quasi-stable particles of a life-time $\tau \geq 10^{-10} \mathrm{~s}$ also directly "seen":

$$
n, \wedge, K_{L}^{0}, \ldots, \mu^{ \pm}, \pi^{ \pm}, K^{ \pm} \ldots
$$

- a life-time $\tau \sim 10^{-12}$ s may display a secondary decay vertex, "vertex-tagged particles":

$$
B^{0, \pm}, D^{0, \pm}, \tau^{ \pm} \ldots
$$

- short-lived not "directly seen", but "reconstructable":

$$
\pi^{0}, \rho^{0, \pm} \ldots, \quad Z, W^{ \pm}, t, H \ldots
$$

- missing particles are weakly-interacting and neutral:

$$
\nu, \tilde{\chi}^{0}, G_{K K} \cdots
$$

\dagger For stable and quasi-stable particles of a life-time

$$
\tau \geq 10^{-10}-10^{-12} \mathrm{~s}, \text { they show up as }
$$

A closer look:

Theorists should know:
For charged tracks: $\Delta p / p \propto p$,

$$
\text { typical resolution : } \sim p /\left(10^{4} \mathrm{GeV}\right)
$$

For calorimetry : $\quad \Delta E / E \propto \frac{1}{\sqrt{E}}$,

$$
\text { typical resolution : } \sim\left(10 \%_{\text {ecal }}, 50 \%_{\text {hcal }}\right) / \sqrt{E / \mathrm{GeV}}
$$

\dagger For vertex-tagged particles $\tau \approx 10^{-12} \mathrm{~s}$, heavy flavor tagging: the secondary vertex:

Typical resolution: $d_{0} \sim 30-50 \mu \mathrm{~m}$ or so
\Rightarrow Better have two (non-collinear) charged tracks for a secondary vertex; Or use the "impact parameter" w.r.t. the primary vertex.
For theorists: just multiply a "tagging efficiency":

$$
\epsilon_{b} \sim 70 \% ; \quad \epsilon_{c} \sim 40 \% ; \quad \epsilon_{\tau} \sim 40 \%
$$

\dagger For short-lived particles: $\tau<10^{-12} \mathrm{~s}$ or so, make use of final state kinematics to reconstruct the resonance.
\dagger For missing particles:
make use of energy-momentum conservation to deduce their existence.

$$
p_{1}^{i}+p_{2}^{i}=\sum_{f}^{o b s} p_{f}+p_{m i s s}
$$

But in hadron collisions, the longitudinal momenta unknown, thus transverse direction only:

$$
0=\sum_{f}^{o b s} \vec{p}_{f T}+\vec{p}_{m i s s} T
$$

often called "missing p_{T} " $\left(\not p_{T}\right)$ or (conventionally) "missing E_{T} " (段).
Note: "missing E_{T} " (MET) is conceptually ill-defined!
It is only sensible for massless particles: 夷 $=\sqrt{\vec{p}_{\text {miss } T}^{2}+m^{2}}$.

What we "see" for the SM particles (no universality!)

Leptons	Vetexing	Tracking	ECAL	HCAL	Muon Cham.
$e^{ \pm}$	\times	\vec{p}	E	\times	\times
$\mu^{ \pm}$	\times	\vec{p}	$\sqrt{ }$	$\sqrt{ }$	\vec{p}
$\tau^{ \pm}$	$\sqrt{ } \times$	$\sqrt{ }$	$e^{ \pm}$	$h^{ \pm} ; 3 h^{ \pm}$	$\mu^{ \pm}$
$\nu_{e}, \nu_{\mu}, \nu_{\tau}$	\times	\times	\times	\times	\times
Quarks					
u, d, s	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times
$c \rightarrow D$	$\sqrt{ }$	$\sqrt{ }$	$e^{ \pm}$	$h^{\prime} \mathrm{s}$	$\mu^{ \pm}$
$b \rightarrow B$	$\sqrt{ }$	$\sqrt{ }$	$e^{ \pm}$	h^{\prime} s	$\mu^{ \pm}$
$t \rightarrow b W^{ \pm}$	b	$\sqrt{ }$	$e^{ \pm}$	$b+2$ jets	$\mu^{ \pm}$
Gauge bosons					
γ	\times	\times	E	\times	\times
g	\times	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times
$W^{ \pm} \rightarrow \ell^{ \pm} \nu$	\times	\vec{p}	$e^{ \pm}$	\times	$\mu^{ \pm}$
$\rightarrow q \bar{q}^{\prime}$	\times	$\sqrt{ }$	$\sqrt{ }$	2 jets	\times
$Z^{0} \rightarrow \ell^{+} \ell^{-}$	\times	\vec{p}	$e^{ \pm}$	\times	$\mu^{ \pm}$
$\rightarrow q \bar{q}$	$(b \bar{b})$	$\sqrt{ }$	$\sqrt{ }$	2 jets	\times
the Higgs boson					
$h^{0} \rightarrow b \bar{b}$	$\sqrt{ }$	$\sqrt{ }$	$e^{ \pm}$	$h^{\prime} s$	$\sqrt{ }$
$\rightarrow Z Z^{*}$	\times	\vec{p}	$e^{ \pm}$	$\mu^{ \pm}$	$\mu^{ \pm}$
$\rightarrow W W^{*}$	\times	\vec{p}	$e^{ \pm}$	$\sqrt{ }$	$\mu^{ \pm}$

How to search for new particles?

Homework:

Exercise 1.1: For a π^{0}, μ^{-}, or a τ^{-}respectively, calculate its decay length for $E=10 \mathrm{GeV}$.

Exercise 1.2: An event was identified to have a $\mu^{+} \mu^{-}$pair, along with some missing energy. What can you say about the kinematics of the system of the missing particles? Consider both an $e^{+} e^{-}$and a hadron collider.

Exercise 1.3: Electron and muon measurements: Estimate the relative errors of energy-momentum measurements for an electron by an electromagnetic calorimetry $(\Delta E / E)$ and for a muon by tracking ($\Delta p / p$) at energies of $E=50 \mathrm{GeV}$ and 500 GeV , respectively.

Exercise 1.4: A 125 GeV Higgs boson will have a production cross section of 20 pb at the 14 TeV LHC. How many events per year do you expect to produce for the Higgs boson with an instantaneous luminosity $10^{33} / \mathrm{cm}^{2} / \mathrm{s}$? Do you expect it to be easy to observe and why?

I-B. Basic Techniques and Tools for Collider Physics (A). Scattering cross section

For a $2 \rightarrow n$ scattering process:

$$
\begin{aligned}
& \sigma(a b \rightarrow 1+2+\ldots n)=\frac{1}{2 s} \bar{\sum}|\mathcal{M}|^{2} d P S_{n} \\
& d P S_{n} \equiv(2 \pi)^{4} \delta^{4}\left(P-\sum_{i=1}^{n} p_{i}\right) \Pi_{i=1}^{n} \frac{1}{(2 \pi)^{3}} \frac{d^{3} \vec{p}_{i}}{2 E_{i}} \\
& s=\left(p_{a}+p_{b}\right)^{2} \equiv P^{2}=\left(\sum_{i=1}^{n} p_{i}\right)^{2}
\end{aligned}
$$

where $\bar{\sum}|\mathcal{M}|^{2}$: dynamics (dimension $4-2 n$);
$d P S_{n}$: kinematics (Lorentz invariant, dimension $2 n-4$.)
For a $1 \rightarrow n$ decay process, the partial width in the rest frame:

$$
\begin{aligned}
& \Gamma(a \rightarrow 1+2+\ldots n)=\frac{1}{2 M_{a}} \bar{\sum}|\mathcal{M}|^{2} d P S_{n} . \\
& \tau=\Gamma_{\text {tot }}^{-1}=\left(\sum_{f}\left\ulcorner_{f}\right)^{-1} .\right.
\end{aligned}
$$

(B). Phase space and kinematics *

One-particle Final State $a+b \rightarrow 1$:

$$
\begin{aligned}
d P S_{1} & \equiv(2 \pi) \frac{d^{3} \vec{p}_{1}}{2 E_{1}} \delta^{4}\left(P-p_{1}\right) \\
& \doteq \pi\left|\vec{p}_{1}\right| d \Omega_{1} \delta^{3}\left(\vec{P}-\vec{p}_{1}\right) \\
& \doteq 2 \pi \delta\left(s-m_{1}^{2}\right)
\end{aligned}
$$

where the first and second equal signs made use of the identities:

$$
|\vec{p}| d|\vec{p}|=E d E, \quad \frac{d^{3} \vec{p}}{2 E}=\int d^{4} p \delta\left(p^{2}-m^{2}\right)
$$

Kinematical relations:

$$
\begin{aligned}
\vec{P} & \equiv \vec{p}_{a}+\vec{p}_{b}=\vec{p}_{1}, \quad E_{1}^{c m}=\sqrt{s} \text { in the c.m. frame } \\
s & =\left(p_{a}+p_{b}\right)^{2}=m_{1}^{2}
\end{aligned}
$$

The "dimensinless phase-space volume" is $s\left(d P S_{1}\right)=2 \pi$.
*E.Byckling, K. Kajantie: Particle Kinemaitcs (1973).

Two-particle Final State $a+b \rightarrow 1+2$:

$$
\begin{aligned}
d P S_{2} & \equiv \frac{1}{(2 \pi)^{2}} \delta^{4}\left(P-p_{1}-p_{2}\right) \frac{d^{3} \vec{p}_{1}}{2 E_{1}} \frac{d^{3} \vec{p}_{2}}{2 E_{2}} \\
& \doteq \frac{1}{(4 \pi)^{2}} \frac{\left|\vec{p}_{1}^{c m}\right|}{\sqrt{s}} d \Omega_{1}=\frac{1}{(4 \pi)^{2}} \frac{\left|\vec{p}_{1}^{c m}\right|}{\sqrt{s}} d \cos \theta_{1} d \phi_{1} \\
& =\frac{1}{4 \pi} \frac{1}{2} \lambda^{1 / 2}\left(1, \frac{m_{1}^{2}}{s}, \frac{m_{2}^{2}}{s}\right) d x_{1} d x_{2}, \\
d \cos \theta_{1} & =2 d x_{1}, \quad d \phi_{1}=2 \pi d x_{2}, \quad 0 \leq x_{1,2} \leq 1,
\end{aligned}
$$

The magnitudes of the energy-momentum of the two particles are fully determined by the four-momentum conservation:

$$
\begin{aligned}
& \left|\vec{p}_{1}^{c m}\right|=\left|\vec{p}_{2}^{c m}\right|=\frac{\lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right)}{2 \sqrt{s}}, E_{1}^{c m}=\frac{s+m_{1}^{2}-m_{2}^{2}}{2 \sqrt{s}}, E_{2}^{c m}=\frac{s+m_{2}^{2}-m_{1}^{2}}{2 \sqrt{s}}, \\
& \lambda(x, y, z)=(x-y-z)^{2}-4 y z=x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z .
\end{aligned}
$$

The phase-space volume of the two-body is scaled down with respect to that of the one-particle by a factor

$$
\frac{d P S_{2}}{s d P S_{1}} \approx \frac{1}{(4 \pi)^{2}} .
$$

just like a "loop factor".

Consider a $2 \rightarrow 2$ scattering process $p_{a}+p_{b} \rightarrow p_{1}+p_{2}$,

the (Lorentz invariant) Mandelstam variables are defined as

$$
\begin{aligned}
s= & \left(p_{a}+p_{b}\right)^{2}=\left(p_{1}+p_{2}\right)^{2}=E_{c m}^{2} \\
t= & \left(p_{a}-p_{1}\right)^{2}=\left(p_{b}-p_{2}\right)^{2}=m_{a}^{2}+m_{1}^{2}-2\left(E_{a} E_{1}-p_{a} p_{1} \cos \theta_{a 1}\right) \\
u= & \left(p_{a}-p_{2}\right)^{2}=\left(p_{b}-p_{1}\right)^{2}=m_{a}^{2}+m_{2}^{2}-2\left(E_{a} E_{2}-p_{a} p_{2} \cos \theta_{a 2}\right) \\
& s+t+u=m_{a}^{2}+m_{b}^{2}+m_{1}^{2}+m_{2}^{2}
\end{aligned}
$$

The two-body phase space can be thus written as

$$
d P S_{2}=\frac{1}{(4 \pi)^{2}} \frac{d t d \phi_{1}}{s \lambda^{1 / 2}\left(1, m_{a}^{2} / s, m_{b}^{2} / s\right)}
$$

Exercise 2.1: Assume that $m_{a}=m_{1}$ and $m_{b}=m_{2}$. Show that

$$
\begin{aligned}
t & =-2 p_{c m}^{2}\left(1-\cos \theta_{a 1}^{*}\right) \\
u & =-2 p_{c m}^{2}\left(1+\cos \theta_{a 1}^{*}\right)+\frac{\left(m_{1}^{2}-m_{2}^{2}\right)^{2}}{s}
\end{aligned}
$$

$p_{c m}=\lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right) / 2 \sqrt{s}$ is the momentum magnitude in the c.m. frame. Note: t is negative-definite; $t \rightarrow 0$ in the collinear limit.

Exercise 2.2: A particle of mass M decays to two particles isotropically in its rest frame. What does the momentum distribution look like in a frame in which the particle is moving with a speed β_{z} ? Compare the result with your expectation for the shape change for a basket ball.

Three-particle Final State $a+b \rightarrow 1+2+3$:

$$
\begin{aligned}
d P S_{3} & \equiv \frac{1}{(2 \pi)^{5}} \delta^{4}\left(P-p_{1}-p_{2}-p_{3}\right) \frac{d^{3} \vec{p}_{1}}{2 E_{1}} \frac{d^{3} \vec{p}_{2}}{2 E_{2}} \frac{d^{3} \vec{p}_{3}}{2 E_{3}} \\
& \doteq \frac{\left|\vec{p}_{1}\right|^{2} d\left|\vec{p}_{1}\right| d \Omega_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{1}{(4 \pi)^{2}} \frac{\left|\vec{p}_{2}^{(23)}\right|}{m_{23}} d \Omega_{2} \\
& =\frac{1}{(4 \pi)^{3}} \lambda^{1 / 2}\left(1, \frac{m_{2}^{2}}{m_{23}^{2}}, \frac{m_{3}^{2}}{m_{23}^{2}}\right) 2\left|\vec{p}_{1}\right| d E_{1} d x_{2} d x_{3} d x_{4} d x_{5} .
\end{aligned}
$$

$$
d \cos \theta_{1,2}=2 d x_{2,4}, \quad d \phi_{1,2}=2 \pi d x_{3,5}, \quad 0 \leq x_{2,3,4,5} \leq 1
$$

$$
\left|\bar{p}_{1}^{c m}\right|^{2}=\left|\bar{p}_{2}^{c m}+\bar{p}_{3}^{c m}\right|^{2}=\left(E_{1}^{c m}\right)^{2}-m_{1}^{2}
$$

$$
m_{23}^{2}=s-2 \sqrt{s} E_{1}^{c m}+m_{1}^{2}, \quad\left|\vec{p}_{2}^{23}\right|=\left|\vec{p}_{3}^{23}\right|=\frac{\lambda^{1 / 2}\left(m_{23}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{2 m_{23}}
$$

The particle energy spectrum is not monochromatic.
The maximum value (the end-point) for particle 1 in c.m. frame is

$$
\begin{aligned}
E_{1}^{\max } & =\frac{s+m_{1}^{2}-\left(m_{2}+m_{3}\right)^{2}}{2 \sqrt{s}}, \quad m_{1} \leq E_{1} \leq E_{1}^{\max } \\
\left|\vec{p}_{1}^{\max }\right| & =\frac{\lambda^{1 / 2}\left(s, m_{1}^{2},\left(m_{2}+m_{3}\right)^{2}\right)}{2 \sqrt{s}}, \quad 0 \leq p_{1} \leq p_{1}^{\max }
\end{aligned}
$$

With $m_{i}=10,20,30, \sqrt{s}=100 \mathrm{GeV}$.

More intuitive to work out the end-point for the kinetic energy,

- recall the direct neutrino mass bound in β-decay:

$$
K_{1}^{\max }=E_{1}^{\max }-m_{1}=\frac{\left(\sqrt{s}-m_{1}-m_{2}-m_{3}\right)\left(\sqrt{s}-m_{1}+m_{2}+m_{3}\right)}{2 \sqrt{s}}
$$

In general, the 3-body phase space boundaries are non-trivial. That leads to the "Dalitz Plots".

One practically useful formula is:
Exercise 2.3: A particle of mass M decays to 3 particles $M \rightarrow a b c$. Show that the phase space element can be expressed as

$$
\begin{aligned}
& d P S_{3}=\frac{1}{2^{7} \pi^{3}} M^{2} d x_{a} d x_{b} . \\
& x_{i}=\frac{2 E_{i}}{M}, \quad\left(i=a, b, c, \quad \sum_{i} x_{i}=2\right) .
\end{aligned}
$$

where the integration limits for $m_{a}=m_{b}=m_{c}=0$ are

$$
0 \leq x_{a} \leq 1, \quad 1-x_{a} \leq x_{b} \leq 1 .
$$

Recursion relation $P \rightarrow 1+2+3 \ldots+n$:

$$
\begin{aligned}
d P S_{n}\left(P ; p_{1}, \ldots, p_{n}\right)= & d P S_{n-1}\left(P ; p_{1}, \ldots, p_{n-1, n}\right) \\
& d P S_{2}\left(p_{n-1, n} ; p_{n-1}, p_{n}\right) \frac{d m_{n-1, n}^{2}}{2 \pi} .
\end{aligned}
$$

For instance,

$$
d P S_{3}=d P S_{2}(i) \frac{d m_{p r o p}^{2}}{2 \pi} d P S_{2}(f)
$$

This is generically true, but particularly useful when the diagram has an s-channel particle propagation.

Breit-Wigner Resonance, the Narrow Width Approximation

An unstable particle of mass M and total width Γ_{V}, the propagator is

$$
R(s)=\frac{1}{\left(s-M_{V}^{2}\right)^{2}+\Gamma_{V}^{2} M_{V}^{2}}
$$

Consider an intermediate state V^{*}

$$
a \rightarrow b V^{*} \rightarrow b p_{1} p_{2}
$$

By the reduction formula, the resonant integral reads

$$
\int_{\left(m_{*}^{\min }\right)^{2}=\left(m_{1}+m_{2}\right)^{2}}^{\left(m_{*}^{\max }\right)^{2}=\left(m_{a}-m_{b}\right)^{2}} d m_{*}^{2} .
$$

Variable change

$$
\tan \theta=\frac{m_{*}^{2}-M_{V}^{2}}{\Gamma_{V} M_{V}},
$$

resulting in a flat integrand over θ

$$
\int_{\left(m_{*}^{\min }\right)^{2}}^{\left(m_{\max }^{\max }\right.} \frac{d m_{*}^{2}}{\left(m_{*}^{2}-M_{V}^{2}\right)^{2}+\Gamma_{V}^{2} M_{V}^{2}}=\int_{\theta^{\min }}^{\theta^{\max }} \frac{d \theta}{\Gamma_{V} M_{V}} .
$$

In the limit

$$
\begin{aligned}
& \left(m_{1}+m_{2}\right)+\Gamma_{V}<M_{V} \ll m_{a}-m_{b}-\Gamma_{V}, \\
& \theta^{\text {min }}=\tan ^{-1} \frac{\left(m_{1}+m_{2}\right)^{2}-M_{V}^{2}}{\Gamma_{V} M_{V}} \rightarrow-\pi, \\
& \theta^{\max }=\tan ^{-1} \frac{\left(m_{a}-m_{b}\right)^{2}-M_{V}^{2}}{\Gamma_{V} M_{V}} \rightarrow 0,
\end{aligned}
$$

then the Narrow Width Approximation

$$
\frac{1}{\left(m_{*}^{2}-M_{V}^{2}\right)^{2}+\Gamma_{V}^{2} M_{V}^{2}} \approx \frac{\pi}{\Gamma_{V} M_{V}} \delta\left(m_{*}^{2}-M_{V}^{2}\right)
$$

Exercise 2.4: Consider a three-body decay of a top quark, $t \rightarrow b W^{*} \rightarrow b$ e . Making use of the phase space recursion relation and the narrow width approximation for the intermediate W boson, show that the partial decay width of the top quark can be expressed as

$$
\Gamma\left(t \rightarrow b W^{*} \rightarrow b e \nu\right) \approx \Gamma(t \rightarrow b W) \cdot B R(W \rightarrow e \nu)
$$

(C). Matrix element: The dynamics

Properties of scattering amplitudes $T(s, t, u)$

- Analyticity: A scattering amplitude is analytical except: simple poles (corresponding to single particle states, bound states etc.); branch cuts (corresponding to thresholds).
- Crossing symmetry: A scattering amplitude for a $2 \rightarrow 2$ process is symmetric among the s^{-}, t^{-}, u-channels.
- Unitarity:

S-matrix unitarity leads to :

$$
-i\left(T-T^{\dagger}\right)=T T^{\dagger}
$$

Partial wave expansion for $a+b \rightarrow 1+2$:

$$
\begin{aligned}
\mathcal{M}(s, t) & =16 \pi \sum_{J=M}^{\infty}(2 J+1) a_{J}(s) d_{\mu \mu^{\prime}}^{J}(\cos \theta) \\
a_{J}(s) & =\frac{1}{32 \pi} \int_{-1}^{1} \mathcal{M}(s, t) d_{\mu \mu^{\prime}}^{J}(\cos \theta) d \cos \theta
\end{aligned}
$$

where $\mu=s_{a}-s_{b}, \mu^{\prime}=s_{1}-s_{2}, M=\max \left(|\mu|,\left|\mu^{\prime}\right|\right)$.

By Optical Theorem: $\sigma=\frac{1}{s} \operatorname{Im} \mathcal{M}(\theta=0)=\frac{16 \pi}{s} \sum_{J=M}^{\infty}(2 J+1)\left|a_{J}(s)\right|^{2}$.
The partial wave amplitude have the properties:
(a). partial wave unitarity: $\operatorname{Im}\left(a_{J}\right) \geq\left|a_{J}\right|^{2}$, or $\left|\operatorname{Re}\left(a_{J}\right)\right| \leq 1 / 2$,
(b). kinematical thresholds: $a_{J}(s) \propto \beta_{i}^{l_{i}} \beta_{f}^{l_{f}}(J=L+S)$.
\Rightarrow well-known behavior: $\sigma \propto \beta_{f}^{2 l_{f}+1}$.
Exercise 2.5: Appreciate the properties (a) and (b) by explicitly calculating the helicity amplitudes for

$$
e_{L}^{-} e_{R}^{+} \rightarrow \gamma^{*} \rightarrow H^{-} H^{+}, \quad e_{L}^{-} e_{L, R}^{+} \rightarrow \gamma^{*} \rightarrow \mu_{L}^{-} \mu_{R}^{+}, \quad H^{-} H^{+} \rightarrow G^{*} \rightarrow H^{-} H^{+}
$$

(D). Calculational Tools

Traditional "Trace" Techniques: (Good for simple processes)

* You should be good at this - QFT course!

With algebraic symbolic manipulations:

* REDUCE, FORM, MATHEMATICA, MAPLE ...

Helicity Techniques: (Necessary for multiple particles)

More suitable for direct numerical evaluations.

* Hagiwara-Zeppenfeld: best for massless particles... (NPB, 1986)
* CalCul Method (by T.T. Wu et al., Parke-Mangano: Phys. Report);
* New techniques in loop calculations
(by Z.Bern, L.Dixon, W. Giele, N. Glover, K.Melnikov, F. Petriello ...)
* "Twisters" (string theory motivated organization)
(by Britto, F.Chachazo, B.Feng, E.Witten ...)
Exercise 2.6: Calculate the squared matrix element for $\bar{\sum}|\mathcal{M}(f \bar{f} \rightarrow Z Z)|^{2}$, in terms of s, t, u, in whatever technique you like.

Much more recent efforts:

* Nima Arkani-Hamed et al. (2015-2017, new formalism.)

Calculational packages:

- Monte Carlo packages for phase space integration:
(1) VEGAS by P. LePage: adaptive important-sampling MC http://en.wikipedia.org/wiki/Monte-Carlo_integration
(2) SAMPLE, RAINBOW, MISER ... (Rarely used.)
- Automated software for matrix elements:
(1) REDUCE - an interactive program designed for general algebraic computations, including to evaluate Dirac algebra, an old-time program, http://www.uni-koeln.de/REDUCE;
http://reduce-algebra.com. (Rarely used.)
(2) FORM by Jos Vermaseren: A program for large scale symbolic manipulation, evaluate fermion traces automatically, and perform loop calculations,s commercially available at http://www.nikhef.nl/ form
(3) FeynCalc and FeynArts: Mathematica packages for algebraic calculations in elementary particle physics.
http://www.feyncalc.org;
http://www.feynarts.de
(4) MadGraph: Helicity amplitude method for tree-level matrix elements available upon request or
http://madgraph.hep.uiuc.edu
- Automated evaluation of cross sections:
(1) MadGraph/MadEvent and MadSUSY:

Generate Fortran codes on-line! http://madgraph.hep.uiuc.edu (Now allows you to input new models.)
(2) CompHEP/CaIHEP: computer program for calculation of elementary particle processes in Standard Model and beyond. CompHEP has a built-in numeric interpreter. So this version permits to make numeric calculation without additional Fortran/C compiler. It is convenient for more or less simple calculations.

- It allows your own construction of a Lagrangian model!
http://theory.npi.msu.su/Ẽryukov
(Now allows you to input new models.)
(3) GRACE and GRACE SUSY: squared matrix elements (Japan) http://minami-home.kek.jp
(4) AlpGen: higher-order tree-level SM matrix elements (M. Mangano ...): http://mlm.home.cern.ch/mlm/alpgen/
(5) SHERPA (F. Krauss et al.): (Gaining popularity) Generate Fortran codes on-line! Merging with MC generators (see next). http://www.sherpa-mc.de/
(6) Pandora by M. Peskin:

C++ based package for $e^{+} e^{-}$, including beam effects.
http://www-sldnt.slac.stanford.edu/nld/new/Docs/
Generators/PANDORA.htm
The program pandora is a general-purpose parton-level event generator which includes beamstrahlung, initial state radiation, and full treatment of polarization effects. (An interface to PYTHIA that produces fully hadronized events is possible.)

- Cross sections at NLO packages: (Gaining popularity)
(1) MC(at)NLO (B. Webber et al.):
http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/
Combining a MC event generator with NLO calculations for QCD processes.
(2) MCFM (K. Ellis et al.):
http://mcfm.fnal.gov/
Parton-level, NLO processes for hadronic collisions.
(3) BlackHat (Z.Bern, L.Dixon, D.Kosover et al.):
http://blackhat.hepforge.org/
Parton-level, NLO processes to combine with Sherpa
- Numerical simulation packages: Monte Carlo Event Generators Reading: http://www.sherpa-mc.de/ (1) PYTHIA:

PYTHIA is a Monte Carlo program for the generation of high-energy physics events, i.e. for the description of collisions at high energies between e^{+}, e^{-}, p and \bar{p} in various combinations.
They contain theory and models for a number of physics aspects, including hard and soft interactions, parton distributions, initial and final state parton showers, multiple interactions, fragmentation and decay.

- It can be combined with MadGraph and detector simulations.
http://www.thep.lu.se/ torbjorn/Pythia.html
Already made crucial contributions to Tevatron/LHC.
(2) HERWIG

HERWIG is a Monte Carlo program which simulates $p p, p \bar{p}$ interactions at high energies. It has the most sophisticated perturbative treatments, and possible NLO QCD matrix elements in parton showing. http://hepwww.rl.ac.uk/theory/seymour/herwig/

(3) ISAJET

ISAJET is a Monte Carlo program which simulates $p p, \bar{p} p$, and $e e$ interactions at high energies. It is largely obsolete.
ISASUSY option is still useful.
http://www.phy.bnl.gov/ isajet (Rarely used these days.)

- "Pretty Good Simulation" (PGS):

By John Conway: A simplified detector simulation, mainly for theorists to estimate the detector effects.
http://www.physics.ucdavis.edu/ conway/research/software/pgs/pgs.html
PGS has been adopted for running with PYTHIA and MadGraph. (but just a "toy".)

- DELPHES: A modular framework for fast simulation of a generic collider experiment.
http://arxiv.org/abs/1307.6346

Over all:

THEORY <-> EXPERIMENT

Connection

II. Physics at an $e^{+} e^{-}$Collider

(A.) Simple Formalism

Event rate of a reaction:

$$
\begin{aligned}
R(s) & =\sigma(s) \mathcal{L}, \quad \text { for constant } \mathcal{L} \\
& =\mathcal{L} \int d \tau \frac{d L(s, \tau)}{d \tau} \sigma(\widehat{s}), \quad \tau=\frac{\widehat{s}}{s}
\end{aligned}
$$

As for the differential production cross section of two-particle a, b,

$$
\frac{d \sigma\left(e^{+} e^{-} \rightarrow a b\right)}{d \cos \theta}=\frac{\beta}{32 \pi s} \bar{\sum}|\mathcal{M}|^{2}
$$

where

- $\beta=\lambda^{1 / 2}\left(1, m_{a}^{2} / s, m_{b}^{2} / s\right)$, is the speed factor for the out-going particles in the c.m. frame, and $p_{c m}=\beta \sqrt{s} / 2$,
- $\overline{\sum|\mathcal{M}|^{2}}$ the squared matrix element, summed and averaged over quantum numbers (like color and spins etc.)
- unpolarized beams so that the azimuthal angle trivially integrated out,

Total cross sections and event rates for SM processes:

(B). Resonant production: Breit-Wigner formula

$$
\frac{1}{\left(s-M_{V}^{2}\right)^{2}+\Gamma_{V}^{2} M_{V}^{2}}
$$

If the energy spread $\delta \sqrt{s} \ll \Gamma_{V}$, the line-shape mapped out:

$$
\sigma\left(e^{+} e^{-} \rightarrow V^{*} \rightarrow X\right)=\frac{4 \pi(2 j+1) \Gamma\left(V \rightarrow e^{+} e^{-}\right) \Gamma(V \rightarrow X)}{\left(s-M_{V}^{2}\right)^{2}+\Gamma_{V}^{2} M_{V}^{2}} \frac{s}{M_{V}^{2}},
$$

If $\delta \sqrt{s} \gg \Gamma_{V}$, the narrow-width approximation:

$$
\begin{aligned}
\frac{1}{\left(s-M_{V}^{2}\right)^{2}+\Gamma_{V}^{2} M_{V}^{2}} & \rightarrow \frac{\pi}{M_{V} \Gamma_{V}} \delta\left(s-M_{V}^{2}\right), \\
\sigma\left(e^{+} e^{-} \rightarrow V^{*} \rightarrow X\right) & =\frac{2 \pi^{2}(2 j+1) \Gamma\left(V \rightarrow e^{+} e^{-}\right) B F(V \rightarrow X)}{M_{V}^{2}} \frac{d L\left(\hat{s}=M_{V}^{2}\right)}{d \sqrt{\widehat{s}}}
\end{aligned}
$$

Exercise 3.1: sketch the derivation of these two formulas, assuming a Gaussian distribution for

$$
\frac{d L}{d \sqrt{\hat{s}}}=\frac{1}{\sqrt{2 \pi} \Delta} \exp \left[\frac{-(\sqrt{\hat{s}}-\sqrt{s})^{2}}{2 \Delta^{2}}\right]
$$

Note: Away from resonance

For an s-channel or a finite-angle scattering:

$$
\sigma \sim \frac{1}{s}
$$

For forward (co-linear) scattering:

$$
\sigma \sim \frac{1}{M_{V}^{2}} \ln ^{2} \frac{s}{M_{V}^{2}}
$$

(C). Fermion production:

Common processes: $e^{-} e^{+} \rightarrow f \bar{f}$.
For most of the situations, the scattering matrix element can be casted into a $V \pm A$ chiral structure of the form (sometimes with the help of Fierz transformations)

$$
\mathcal{M}=\frac{e^{2}}{s} Q_{\alpha \beta}\left[\bar{v}_{e^{+}}\left(p_{2}\right) \gamma^{\mu} P_{\alpha} u_{e^{-}}\left(p_{1}\right)\right]\left[\bar{\psi}_{f}\left(q_{1}\right) \gamma_{\mu} P_{\beta} \psi_{\bar{f}}^{\prime}\left(q_{2}\right)\right],
$$

where $P_{\mp}=\left(1 \mp \gamma_{5}\right) / 2$ are the L, R chirality projection operators, and $Q_{\alpha \beta}$ are the bilinear couplings governed by the underlying physics of the interactions with the intermediate propagating fields. With this structure, the scattering matrix element squared:

$$
\begin{aligned}
\overline{\sum|\mathcal{M}|^{2}} & =\frac{e^{4}}{s^{2}}\left[\left(\left|Q_{L L}\right|^{2}+\left|Q_{R R}\right|^{2}\right) u_{i} u_{j}+\left(\left|Q_{L L}\right|^{2}+\left|Q_{R L}\right|^{2}\right) t_{i} t_{j}\right. \\
& \left.+2 \operatorname{Re}\left(Q_{L L}^{*} Q_{L R}+Q_{R R}^{*} Q_{R L}\right) m_{f} m_{\bar{f}} s\right] \\
\text { where } t_{i}=t-m_{i}^{2} & =\left(p_{1}-q_{1}\right)^{2}-m_{i}^{2} \text { and } u_{i}=u-m_{i}^{2}=\left(p_{1}-q_{2}\right)^{2}-m_{i}^{2} .
\end{aligned}
$$

Exercise 3.2: Verify this formula.
(D). Typical size of the cross sections:

- The simplest reaction

$$
\sigma\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \mu^{+} \mu^{-}\right) \equiv \sigma_{p t}=\frac{4 \pi \alpha^{2}}{3 s}
$$

In fact, $\sigma_{p t} \approx 100 \mathrm{fb} /(\sqrt{s} / \mathrm{TeV})^{2}$ has become standard units to measure the size of cross sections.

- The Z resonance prominent (or other M_{V}),
- At the ILC $\sqrt{s}=500 \mathrm{GeV}$,

$$
\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-}\right) \sim 100 \sigma_{p t} \sim 40 \mathrm{pb}
$$

(anglular cut dependent.)

$$
\begin{aligned}
& \sigma_{p t} \sim \sigma(Z Z) \sim \sigma(t \bar{t}) \sim 400 \mathrm{fb} \\
& \sigma(u, d, s) \sim 9 \sigma_{p t} \sim 3.6 \mathrm{pb} \\
& \sigma(W W) \sim 20 \sigma_{p t} \sim 8 \mathrm{pb}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sigma(Z H) \sim \sigma(W W \rightarrow H) \sim \sigma_{p t} / 4 \sim 100 \mathrm{fb} \\
& \sigma(W W Z) \sim 0.1 \sigma_{p t} \sim 40 \mathrm{fb}
\end{aligned}
$$

(E). Gauge boson radiation:

A qualitatively different process is initiated from gauge boson radiation, typically off fermions:

The simplest case is the photon radiation off an electron, like:

$$
e^{+} e^{-} \rightarrow e^{+}, \gamma^{*} e^{-} \rightarrow e^{+} e^{-}
$$

The dominant features are due to the result of a t-channel singularity, induced by the collinear photon splitting:

$$
\sigma\left(e^{-} a \rightarrow e^{-} X\right) \approx \int d x P_{\gamma / e}(x) \sigma(\gamma a \rightarrow X)
$$

The so called the effective photon approximation.

For an electron of energy E, the probability of finding a collinear photon of energy $x E$ is given by

$$
P_{\gamma / e}(x)=\frac{\alpha}{2 \pi} \frac{1+(1-x)^{2}}{x} \ln \frac{E^{2}}{m_{e}^{2}}
$$

known as the Weizsäcker-Williams spectrum.
Exercise 3.3: Try to derive this splitting function.

We see that:

- m_{e} enters the log to regularize the collinear singularity;
- $1 / x$ leads to the infrared behavior of the photon;
- This picture of the photon probability distribution is also valid for other photon spectrum:
Based on the back-scattering laser technique, it has been proposed to produce much harder photon spectrum, to construct a "photon collider"...

(massive) Gauge boson radiation:

A similar picture may be envisioned for the electroweak massive gauge bosons, $V=W^{ \pm}, Z$.

Consider a fermion f of energy E, the probability of finding a (nearly) collinear gauge boson V of energy $x E$ and transverse momentum p_{T} (with respect to \vec{p}_{f}) is approximated by

$$
\begin{aligned}
& P_{V / f}^{T}\left(x, p_{T}^{2}\right)=\frac{g_{V}^{2}+g_{A}^{2}}{8 \pi^{2}} \frac{1+(1-x)^{2}}{x} \frac{p_{T}^{2}}{\left(p_{T}^{2}+(1-x) M_{V}^{2}\right)^{2}}, \\
& P_{V / f}^{L}\left(x, p_{T}^{2}\right)=\frac{g_{V}^{2}+g_{A}^{2}}{4 \pi^{2}} \frac{1-x}{x} \frac{(1-x) M_{V}^{2}}{\left(p_{T}^{2}+(1-x) M_{V}^{2}\right)^{2}} .
\end{aligned}
$$

Although the collinear scattering would not be a good approximation until reaching very high energies $\sqrt{s} \gg M_{V}$, it is instructive to consider the qualitative features.

(F). Recoil mass technique:

One of the most important techniques, that distinguishes an $e^{+} e^{-}$collisions from hadronic collisions.
Consider a process:

$$
e^{+}+e^{-} \rightarrow V+X,
$$

where V: a (bunch of) visible particle(s); X : unspecified.
Then:

$$
\begin{aligned}
& p_{e^{+}}+p_{e^{-}}=p_{V}+p_{X}, \quad\left(p_{e^{+}}+p_{e^{-}}-p_{V}\right)^{2}=p_{X}^{2}, \\
& M_{X}^{2}=\left(p_{e^{+}}+p_{e^{-}}-p_{V}\right)^{2}=s+M_{V}^{2}-2 \sqrt{s} E_{V}
\end{aligned}
$$

One thus obtain the "model-independent" inclusive measurements
a. mass of X by the recoil mass peak
b. coupling of X by simple event-count at the peak

The key point for a Higgs factory: $e^{+}+e^{-} \rightarrow f \bar{f}+h$.

Then:

$$
M_{h}^{2}=\left(p_{e^{+}}+p_{e^{-}}-p_{f}-p_{\bar{f}}\right)^{2}=s+M_{V}^{2}-2 \sqrt{s} E_{f \bar{f} \bar{f}} .
$$

Model-independent, kinematical selection of signal events!

(G). Beam polarization:

One of the merits for an $e^{+} e^{-}$linear collider is the possible high polarization for both beams.
Consider first the longitudinal polarization along the beam line direction. Denote the average $e^{ \pm}$beam polarization by $P_{ \pm}^{L}$, with $P_{ \pm}^{L}=-1$ purely left-handed and +1 purely right-handed.

The polarized squared matrix element, based on the helicity amplitudes $\mathcal{M}_{\sigma_{e}-\sigma_{e+}}$:

$$
\begin{aligned}
\bar{\sum}|\mathcal{M}|^{2}= & \frac{1}{4}\left[\left(1-P_{-}^{L}\right)\left(1-P_{+}^{L}\right)\left|\mathcal{M}_{--}\right|^{2}+\left(1-P_{-}^{L}\right)\left(1+P_{+}^{L}\right)\left|\mathcal{M}_{-+}\right|^{2}\right. \\
& +\left(1+P_{-}^{L}\left(1-P_{+}^{L}\right)\left|\mathcal{M}_{+-}\right|^{2}+\left(1+P_{-}^{L}\right)\left(1+P_{+}^{L}\right)\left|\mathcal{M}_{++}\right|^{2}\right] .
\end{aligned}
$$

Since the electroweak interactions of the SM and beyond are chiral: Certain helicity amplitudes can be suppressed or enhanced by properly choosing the beam polarizations: e.g., $W^{ \pm}$exchange ...

Furthermore, it is possible to produce transversely polarized beams with the help of a spin-rotator.
If the beams present average polarizations with respect to a specific direction perpendicular to the beam line direction, $-1<P_{ \pm}^{T}<1$, then there will be one additional term in the limit $m_{e} \rightarrow 0$,

$$
\frac{1}{4} 2 P_{-}^{T} P_{+}^{T} \operatorname{Re}\left(\mathcal{M}_{-+} \mathcal{M}_{+-}^{*}\right)
$$

The transverse polarization is particularly important when the interactions produce an asymmetry in azimuthal angle, such as the effect of CP violation.

III. Hadron Collider Physics

(A). New HEP frontier: the LHC The Higgs discovery and more excitements ahead ...

LHC Event rates for various SM processes:

Annual yield \# of events $=\sigma \times L_{i n t}$:
10B $W^{ \pm}$; 100M $t \bar{t} ; 10 \mathrm{M} W^{+} W^{-} ; 1 \mathrm{M} H^{0} \ldots$

Discovery of the Higgs boson opened a new chapter of HEP!

Theoretical challenges:

Unprecedented energy frontier

(a) Total hadronic cross section: Non-perturbative. The order of magnitude estimate:

$$
\sigma_{p p}=\pi r_{e f f}^{2} \approx \pi / m_{\pi}^{2} \sim 120 \mathrm{mb}
$$

Energy-dependence?

$$
\begin{aligned}
& \sigma(p p) \begin{cases}\approx 21.7\left(\frac{s}{\mathrm{GeV}^{2}}\right)^{0.0808} \mathrm{mb}, & \text { Empirical relation } \\
<\frac{\pi}{m_{\pi}^{2}} \ln ^{2} \frac{s}{s_{0}}, & \text { Froissart bound. } \\
\text { (b) Perturbative hadronic cross section: } \\
\sigma_{p p}(S)=\int d x_{1} d x_{2} P_{1}\left(x_{1}, Q^{2}\right) P_{2}\left(x_{2}, Q^{2}\right) \hat{\sigma}_{\text {parton }}(s) .\end{cases}
\end{aligned}
$$

- Accurate (higher orders) partonic cross sections $\widehat{\sigma}_{\text {parton }}(s)$.
- Parton distribution functions to the extreme (density):

$$
Q^{2} \sim(a \text { few } T e V)^{2}, \quad x \sim 10^{-3}-10^{-6}
$$

Experimental challenges:

- The large rate turns to a hostile environment:
≈ 1 billion event/sec: impossible read-off !
≈ 1 interesting event per $1,000,000$: selection (triggering).
≈ 25 overlapping events/bunch crossing:

Colliding beam

\Rightarrow Severe backgrounds!

Triggering thresholds:

	ATLAS	
Objects	η	$p_{T}(\mathrm{GeV})$
μ inclusive	2.4	$6(20)$
$e /$ photon inclusive	2.5	$17(26)$
Two e's or two photons	2.5	$12(15)$
1 -jet inclusive	3.2	$180(290)$
3 jets	3.2	$75(130)$
4 jets	3.2	$55(90)$
$\tau /$ hadrons	2.5	$43(65)$
$\not \mathbb{L}_{T}$	\mathscr{H}_{T}	4.9
Jets $+\mathbb{L}_{T}$	$3.2,4.9$	$50,50(100,100)$

$$
\left(\eta=2.5 \Rightarrow 10^{\circ} ; \quad \eta=5 \Rightarrow 0.8^{\circ} .\right)
$$

With optimal triggering and kinematical selections:

$$
p_{T} \geq 30-100 \mathrm{GeV}, \quad|\eta| \leq 3-5 ; \quad \not \text { Е }_{\top} \geq 100 \mathrm{GeV}
$$

(B). Special kinematics for hadron colliders

Hadron momenta: $P_{A}=\left(E_{A}, 0,0, p_{A}\right), \quad P_{B}=\left(E_{A}, 0,0,-p_{A}\right)$,
The parton momenta: $p_{1}=x_{1} P_{A}, \quad p_{2}=x_{2} P_{B}$.
Then the parton c.m. frame moves randomly, even by event:

$$
\begin{aligned}
\beta_{c m} & =\frac{x_{1}-x_{2}}{x_{1}+x_{2}}, \quad \text { or }: \\
y_{c m} & =\frac{1}{2} \ln \frac{1+\beta_{c m}}{1-\beta_{c m}}=\frac{1}{2} \ln \frac{x_{1}}{x_{2}}, \quad\left(-\infty<y_{c m}<\infty\right) .
\end{aligned}
$$

The four-momentum vector transforms as

$$
\begin{aligned}
\binom{E^{\prime}}{p_{z}^{\prime}} & =\left(\begin{array}{lll}
\gamma & -\gamma \beta_{c m} \\
-\gamma \beta_{c m} & \gamma &
\end{array}\right)\binom{E}{p_{z}} \\
& =\left(\begin{array}{ll}
\cosh y_{c m} & -\sinh y_{c m} \\
-\sinh y_{c m} & \cosh y_{c m}
\end{array}\right)\binom{E}{p_{z}} .
\end{aligned}
$$

This is often called the "boost".

One wishes to design final-state kinematics invariant under the boost: For a four-momentum $p \equiv p^{\mu}=(E, \vec{p})$,

$$
\begin{aligned}
E_{T} & =\sqrt{p_{T}^{2}+m^{2}}, \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}} \\
p^{\mu} & =\left(E_{T} \cosh y, p_{T} \sin \phi, p_{T} \cos \phi, E_{T} \sinh y\right) \\
\frac{d^{3} \vec{p}}{E} & =p_{T} d p_{T} d \phi d y=E_{T} d E_{T} d \phi d y .
\end{aligned}
$$

Due to random boost between Lab-frame/c.m. frame event-by-event,

$$
y^{\prime}=\frac{1}{2} \ln \frac{E^{\prime}+p_{z}^{\prime}}{E^{\prime}-p_{z}^{\prime}}=\frac{1}{2} \ln \frac{\left(1-\beta_{c m}\right)\left(E+p_{z}\right)}{\left(1+\beta_{c m}\right)\left(E-p_{z}\right)}=y-y_{c m} .
$$

In the massless limit, rapidity \rightarrow pseudo-rapidity:

$$
y \rightarrow \eta=\frac{1}{2} \ln \frac{1+\cos \theta}{1-\cos \theta}=\ln \cot \frac{\theta}{2}
$$

Exercise 4.1: Verify all the above equations.

The "Lego" plot:

A CDF di-jet event on a lego plot in the $\eta-\phi$ plane.
$\phi, \Delta y=y_{2}-y_{1}$ is boost-invariant.
Thus the "separation" between two particles in an event $\Delta R=\sqrt{\Delta \phi^{2}+\Delta y^{2}}$ is boost-invariant, and lead to the "cone definition" of a jet.

(C). Characteristic observables:

Crucial for uncovering new dynamics.
Selective experimental events
\Longrightarrow Characteristic kinematical observables (spatial, time, momentaum phase space)
\Longrightarrow Dynamical parameters
(masses, couplings)
Energy momentum observables \Longrightarrow mass parameters
Angular observables \Longrightarrow nature of couplings;
Production rates, decay branchings/lifetimes \Longrightarrow interaction strengths.
(D). Kinematical features:
(a). s-channel singularity: bump search we do best.

- invariant mass of two-body $R \rightarrow a b: m_{a b}^{2}=\left(p_{a}+p_{b}\right)^{2}=M_{R}^{2}$. combined with the two-body Jacobian peak in transverse momentum:

$$
\frac{d \hat{\sigma}}{d m_{e e}^{2} d p_{e T}^{2}} \propto \frac{\Gamma_{Z} M_{Z}}{\left(m_{e e}^{2}-M_{Z}^{2}\right)^{2}+\Gamma_{Z}^{2} M_{Z}^{2}} \frac{1}{m_{e e}^{2} \sqrt{1-4 p_{e T}^{2} / m_{e e}^{2}}}
$$

$$
Z \rightarrow e^{+} e^{-}
$$

Electron $\mathrm{E}_{\mathrm{T}}-\mathrm{W}$ Candidate

$W \rightarrow e \nu$

- "transverse" mass of two-body $W^{-} \rightarrow e^{-} \bar{\nu}_{e}$:

$$
\begin{aligned}
m_{e \nu T}^{2} & =\left(E_{e T}+E_{\nu T}\right)^{2}-\left(\vec{p}_{e T}+\vec{p}_{\nu T}\right)^{2} \\
& =2 E_{e T} E_{T}^{m i s s}(1-\cos \phi) \leq m_{e \nu}^{2}
\end{aligned}
$$

If $p_{T}(W)=0$, then $m_{e \nu T}=2 E_{e T}=2 E_{T}^{m i s s}$.

Exercise 5.1: For a two-body final state kinematics, show that

$$
\frac{d \hat{\sigma}}{d p_{e T}}=\frac{4 p_{e T}}{s \sqrt{1-4 p_{e T}^{2} / s}} \frac{d \hat{\sigma}}{d \cos \theta^{*}}
$$

where $p_{e T}=p_{e} \sin \theta^{*}$ is the transverse momentum and θ^{*} is the polar angle in the c.m. frame. Comment on the apparent singularity at $p_{e T}^{2}=s / 4$.

Exercise 5.2: Show that for an on-shell decay $W^{-} \rightarrow e^{-} \bar{\nu}_{e}$:

$$
m_{e \nu T}^{2} \equiv\left(E_{e T}+E_{\nu T}\right)^{2}-\left(\vec{p}_{e T}+\vec{p}_{\nu T}\right)^{2} \leq m_{e \nu}^{2}
$$

Exercise 5.3: Show that if W / Z has some transverse motion, δP_{V}, then:

$$
\begin{aligned}
& p_{e T}^{\prime} \sim p_{e T}\left[1+\delta P_{V} / M_{V}\right] \\
& m_{e \nu}^{\prime 2} T \sim m_{e \nu}^{2} T\left[1-\left(\delta P_{V} / M_{V}\right)^{2}\right] \\
& m_{e e}^{\prime 2}=m_{e e}^{2}
\end{aligned}
$$

- $H^{0} \rightarrow W^{+} W^{-} \rightarrow j_{1} j_{2} e^{-} \bar{\nu}_{e}:$
cluster transverse mass (I):

$$
\begin{aligned}
& m_{W W T}^{2}=\left(E_{W_{1} T}+E_{W_{2} T}\right)^{2}-\left(\vec{p}_{j j T}+\vec{p}_{e T}+\vec{p}_{T}^{m i s s}\right)^{2} \\
& =\left(\sqrt{p_{j j T}^{2}+M_{W}^{2}}+\sqrt{p_{e \nu T}^{2}+M_{W}^{2}}\right)^{2}-\left(\vec{p}_{j j T}+\vec{p}_{e T}+\vec{p}_{T}^{m i s s}\right)^{2} \leq M_{H}^{2} . \\
& \text { where } \vec{p}_{T}{ }^{\text {miss }} \equiv \overrightarrow{p_{T}}=-\sum_{o b s} \vec{p}_{T}^{\text {obs }} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } H^{0} \rightarrow W^{+} W^{-} \rightarrow e^{+} \nu_{e} e^{-} \bar{\nu}_{e}: \\
& \text { "effecive" transverse mass: } \\
& m_{e f f T}^{2}=\left(E_{e 1 T}+E_{e 2 T}+E_{T}^{m i s s}\right)^{2}-\left(\vec{p}_{e 1 T}+\vec{p}_{e 2 T}+\vec{p}_{T}^{\text {miss }}\right)^{2} \\
& m_{\text {eff } T} \approx E_{e 1 T}+E_{e 2 T}+E_{T}^{\text {miss }}
\end{aligned}
$$

cluster transverse mass (II):

$$
\begin{aligned}
m_{W W C}^{2} & =\left(\sqrt{p_{T, \ell \ell}^{2}+M_{\ell \ell}^{2}}+\not p_{T}\right)^{2}-\left(\vec{p}_{T, \ell \ell}+\vec{p}_{T}\right)^{2} \\
m_{W W C} & \approx \sqrt{p_{T, \ell \ell}^{2}+M_{\ell \ell}^{2}}+\not p_{T}
\end{aligned}
$$

$M_{W W}$ invariant mass ($W W$ fully reconstructable): $M_{W W, T}$ transverse mass (one missing particle ν): $M_{e f f, T}$ effetive trans. mass (two missing particles): $M_{W W, C}$ cluster trans. mass (two missing particles):

YOU design an optimal variable/observable for the search.

- cluster transverse mass (III):

$$
H^{0} \rightarrow \tau^{+} \tau^{-} \rightarrow \mu^{+} \bar{\nu}_{\tau} \nu_{\mu}, \quad \rho^{-} \nu_{\tau}
$$

A lot more complicated with (many) more $\nu^{\prime} s$?

Not really!

$\tau^{+} \tau^{-}$ultra-relativistic, the final states from a τ decay highly collimated:

$$
\theta \approx \gamma_{\tau}^{-1}=m_{\tau} / E_{\tau}=2 m_{\tau} / m_{H} \approx 1.5^{\circ} \quad\left(m_{H}=120 \mathrm{GeV}\right)
$$

We can thus take

$$
\begin{aligned}
\vec{p}_{\tau^{+}} & =\vec{p}_{\mu^{+}}+\vec{p}_{+}^{\nu^{\prime} s}, \quad \vec{p}_{+}^{\nu^{\prime} s} \approx c_{+} \vec{p}_{\mu}+ \\
\vec{p}_{\tau^{-}} & =\vec{p}_{\rho^{-}}+\vec{p}_{-}^{\nu^{\prime} s}, \quad \vec{p}_{-}^{\nu^{\prime} s} \approx c_{-} \vec{p}_{\rho^{-}}
\end{aligned}
$$

where $c_{ \pm}$are proportionality constants, to be determined.
This is applicable to any decays of fast-moving particles, like

$$
T \rightarrow W b \rightarrow \ell \nu, b
$$

Experimental measurements: $p_{\rho^{-}}, p_{\mu^{+}}, p_{T}$:

$$
\begin{aligned}
& c_{+}\left(p_{\mu^{+}}\right)_{x}+c_{-}\left(p_{\rho^{-}}\right)_{x}=\left(p_{T}\right)_{x}, \\
& c_{+}\left(p_{\mu^{+}}\right)_{y}+c_{-}\left(p_{\rho^{-}}\right) y=\left(p_{T}\right)_{y} .
\end{aligned}
$$

Unique solutions for $c_{ \pm}$exist if

$$
\left(p_{\mu^{+}}\right)_{x} /\left(p_{\mu^{+}}\right)_{y} \neq\left(p_{\rho^{-}}\right)_{x} /\left(p_{\rho^{-}}\right)_{y}
$$

Physically, the τ^{+}and τ^{-}should form a finite angle, or the Higgs should have a non-zero transverse momentum.

(b). Two-body versus three-body kinematics

- Energy end-point and mass edges: utilizing the "two-body kinematics"
Consider a simple case:

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \tilde{\mu}_{R}^{+} \tilde{\mu}_{R}^{-} \\
& \text {with two }- \text { body decays : } \tilde{\mu}_{R}^{+} \rightarrow \mu^{+} \tilde{\chi}_{0}, \quad \tilde{\mu}_{R}^{-} \rightarrow \mu^{-} \tilde{\chi}_{0} .
\end{aligned}
$$

In the $\tilde{\mu}_{R}^{+}$-rest frame: $E_{\mu}^{0}=\frac{M_{\tilde{\mu}_{R}}^{2}-m_{\chi}^{2}}{2 M_{\tilde{\mu}_{R}}}$.
In the Lab-frame:

$$
\begin{aligned}
& (1-\beta) \gamma E_{\mu}^{0} \leq E_{\mu}^{l a b} \leq(1+\beta) \gamma E_{\mu}^{0} \\
& \text { with } \beta=\left(1-4 M_{\tilde{\mu}_{R}}^{2} / s\right)^{1 / 2}, \quad \gamma=(1-\beta)^{-1 / 2} .
\end{aligned}
$$

Energy end-point: $E_{\mu}^{l a b} \Rightarrow M_{\mu_{R}}^{2}-m_{\chi}^{2}$. Mass edge: $m_{\mu^{+} \mu^{-}}^{\max }=\sqrt{s}-2 m_{\chi}$.
Same idea can be applied to hadron colliders ...

Consider a squark cascade decay:

$$
\begin{array}{ll}
1^{\text {st }} \text { edge }: & M^{\max }(\ell \ell)=M_{\chi_{2}^{0}}-M_{\chi_{1}^{0}} ; \\
2^{\text {nd }} \text { edge }: & M^{\max }(\ell \ell j)=M_{\tilde{q}}-M_{\chi_{1}^{0}} .
\end{array}
$$

Exercise 5.4: Verify these relations.

(c). t-channel singularity: splitting.

- Gauge boson radiation off a fermion:

The familiar Weizsäcker-Williams approximation

$$
\begin{aligned}
\sigma\left(f a \rightarrow f^{\prime} X\right) & \approx \int d x d p_{T}^{2} P_{\gamma / f}\left(x, p_{T}^{2}\right) \sigma(\gamma a \rightarrow X), \\
P_{\gamma / e}\left(x, p_{T}^{2}\right) & =\left.\frac{\alpha}{2 \pi} \frac{1+(1-x)^{2}}{x}\left(\frac{1}{p_{T}^{2}}\right)\right|_{m_{e}} ^{E} .
\end{aligned}
$$

\dagger The kernel is the same as $q \rightarrow q g^{*} \quad \Rightarrow$ generic for parton splitting;
\dagger The form $d p_{T}^{2} / p_{T}^{2} \rightarrow \ln \left(E^{2} / m_{e}^{2}\right)$ reflects the collinear behavior.

- Generalize to massive gauge bosons:

$$
\begin{aligned}
P_{V / f}^{T}\left(x, p_{T}^{2}\right) & =\frac{g_{V}^{2}+g_{A}^{2}}{8 \pi^{2}} \frac{1+(1-x)^{2}}{x} \frac{p_{T}^{2}}{\left(p_{T}^{2}+(1-x) M_{V}^{2}\right)^{2}} \\
P_{V / f}^{L}\left(x, p_{T}^{2}\right) & =\frac{g_{V}^{2}+g_{A}^{2}}{4 \pi^{2}} \frac{1-x}{x} \frac{(1-x) M_{V}^{2}}{\left(p_{T}^{2}+(1-x) M_{V}^{2}\right)^{2}}
\end{aligned}
$$

Special kinematics for massive gauge boson fusion processes: For the accompanying jets,
At low- $p_{j T}$,

$$
\left.\begin{array}{l}
p_{j T}^{2} \approx(1-x) M_{V}^{2} \\
E_{j} \sim(1-x) E_{q}
\end{array}\right\} \text { forward jet tagging }
$$

At high- $p_{j T}$,

$$
\left.\begin{array}{rl}
\frac{d \sigma\left(V_{T}\right)}{d p_{p}^{2}} & \propto 1 / p_{j T}^{2} \\
\frac{d \sigma\left(V_{L}\right)}{d p_{j T}^{2}} & \propto 1 / p_{j T}^{4}
\end{array}\right\} \text { central jet vetoing }
$$

has become important tools for Higgs searches, single-top signal etc.

(E). Charge forward-backward asymmetry $A_{F B}$:

The coupling vertex of a vector boson V_{μ} to an arbitrary fermion pair f

$$
i \sum_{\tau}^{L, R} g_{\tau}^{f} \gamma^{\mu} P_{\tau} \quad \rightarrow \quad \text { crucial to probe chiral structures. }
$$

The parton-level forward-backward asymmetry is defined as

$$
\begin{aligned}
A_{F B}^{i, f} & \equiv \frac{N_{F}-N_{B}}{N_{F}+N_{B}}=\frac{3}{4} \mathcal{A}_{i} \mathcal{A}_{f}, \\
\mathcal{A}_{f} & =\frac{\left(g_{L}^{f}\right)^{2}-\left(g_{R}^{f}\right)^{2}}{\left(g_{L}^{f}\right)^{2}+\left(g_{R}^{f}\right)^{2}} .
\end{aligned}
$$

where $N_{F}\left(N_{B}\right)$ is the number of events in the forward (backward) direction defined in the parton c.m. frame relative to the initial-state fermion \vec{p}_{i}.

At hadronic level:

$$
A_{F B}^{\mathrm{LHCC}}=\frac{\int d x_{1} \sum_{q} A_{F B}^{q, f}\left(P_{q}\left(x_{1}\right) P_{\bar{q}}\left(x_{2}\right)-P_{\bar{q}}\left(x_{1}\right) P_{q}\left(x_{2}\right)\right) \operatorname{sign}\left(x_{1}-x_{2}\right)}{\int d x_{1} \sum_{q}\left(P_{q}\left(x_{1}\right) P_{\bar{q}}\left(x_{2}\right)+P_{\bar{q}}\left(x_{1}\right) P_{q}\left(x_{2}\right)\right)}
$$

Perfectly fine for Z / Z^{\prime}-type:

In $p \bar{p}$ collisions, $\vec{p}_{\text {proton }}$ is the direction of $\vec{p}_{\text {quark }}$.

In $p p$ collisions, however, what is the direction of $\vec{p}_{\text {quark }}$? It is the boost-direction of $\ell^{+} \ell^{-}$.

How about $W^{ \pm} / W^{\prime \pm}\left(\ell^{ \pm} \nu\right)$-type?

In $p \bar{p}$ collisions, $\vec{p}_{\text {proton }}$ is the direction of $\vec{p}_{\text {quark }}$, AND $\ell^{+}\left(\ell^{-}\right)$along the direction with $\bar{q}(q) \Rightarrow$ OK at the Tevatron,

But: (1). cann't get the boost-direction of $\ell^{ \pm} \nu$ system;
(2). Looking at $\ell^{ \pm}$alone, no insight for W_{L} or W_{R} !

In $p \bar{p}$ collisions: (1). a reconstructable system
(2). with spin correlation \rightarrow only tops $W^{\prime} \rightarrow t \bar{b} \rightarrow \ell^{ \pm} \nu \bar{b}$:

(F). CP asymmetries $A_{C P}$:

To non-ambiguously identify $C P$-violation effects, one must rely on CP-odd variables.

Definition: $A_{C P}$ vanishes if CP-violation interactions do not exist (for the relevant particles involved).

This is meant to be in contrast to an observable: that'd be modified by the presence of CP-violation, but is not zero when CP-violation is absent.

$$
\text { e.g. } M_{\left(\chi^{ \pm} \chi^{0}\right)}, \quad \sigma\left(H^{0}, A^{0}\right), \ldots
$$

Two ways:
a). Compare the rates between a process and its CP-conjugate process:

$$
\frac{R(i \rightarrow f)-R(\bar{i} \rightarrow \bar{f})}{R(i \rightarrow f)+R(\bar{i} \rightarrow \bar{f})}, \quad \text { e.g. } \quad \frac{\Gamma\left(t \rightarrow W^{+} q\right)-\Gamma\left(\bar{t} \rightarrow W^{-} \bar{q}\right)}{\Gamma\left(t \rightarrow W^{+} q\right)+\Gamma\left(\bar{t} \rightarrow W^{-} \bar{q}\right)} .
$$

b). Construct a CP-odd kinematical variable for an initially CP-eigenstate:

$$
\begin{aligned}
& \mathcal{M} \sim M_{1}+M_{2} \sin \theta \\
& A_{C P}=\sigma^{F}-\sigma^{B}=\int_{0}^{1} \frac{d \sigma}{d \cos \theta} d \cos \theta-\int_{-1}^{0} \frac{d \sigma}{d \cos \theta} d \cos \theta
\end{aligned}
$$

E.g. 1: $H \rightarrow Z\left(p_{1}\right) Z^{*}\left(p_{2}\right) \rightarrow e^{+}\left(q_{1}\right) e^{-}\left(q_{2}\right), \mu^{+} \mu^{-}$

$$
\Gamma^{\mu \nu}\left(p_{1}, p_{2}\right)=i \frac{2}{v} h\left[a M_{Z}^{2} g^{\mu \nu}+b\left(p_{1}^{\mu} p_{2}^{\nu}-p_{1} \cdot p_{2} g^{\mu \nu}\right)+\widetilde{b} \epsilon^{\mu \nu \rho \sigma} p_{1 \rho} p_{2 \sigma}\right]
$$

$a=1, b=\tilde{b}=0$ for SM.
In general, a, b, \tilde{b} complex form factors, describing new physics at a higher scale.

For $H \rightarrow Z\left(p_{1}\right) Z^{*}\left(p_{2}\right) \rightarrow e^{+}\left(q_{1}\right) e^{-}\left(q_{2}\right), \mu^{+} \mu^{-}$, define:

$$
\begin{aligned}
& O_{C P} \sim\left(\vec{p}_{1}-\vec{p}_{2}\right) \cdot\left(\vec{q}_{1} \times \vec{q}_{2}\right), \\
& \text { or } \cos \theta=\frac{\left(\vec{p}_{1}-\vec{p}_{2}\right) \cdot\left(\vec{q}_{1} \times \vec{q}_{2}\right)}{\left.\left|\vec{p}_{1}-\vec{p}_{2}\right| \mid \vec{q}_{1} \times \vec{q}_{2}\right) \mid} .
\end{aligned}
$$

E.g. 2: $H \rightarrow t\left(p_{t}\right) \bar{t}\left(p_{\bar{t}}\right) \rightarrow e^{+}\left(q_{1}\right) \nu_{1} b_{1}, e^{-}\left(q_{2}\right) \nu_{2} b_{2}$.

$$
\begin{aligned}
& -\frac{m_{t}}{v} \bar{t}\left(a+b \gamma^{5}\right) t H \\
& O_{C P} \sim\left(\overrightarrow{p_{t}}-\overrightarrow{p_{\bar{t}}}\right) \cdot\left(\vec{p}_{e^{+}} \times \vec{p}_{e^{-}}\right) .
\end{aligned}
$$

thus define an asymmetry angle.

