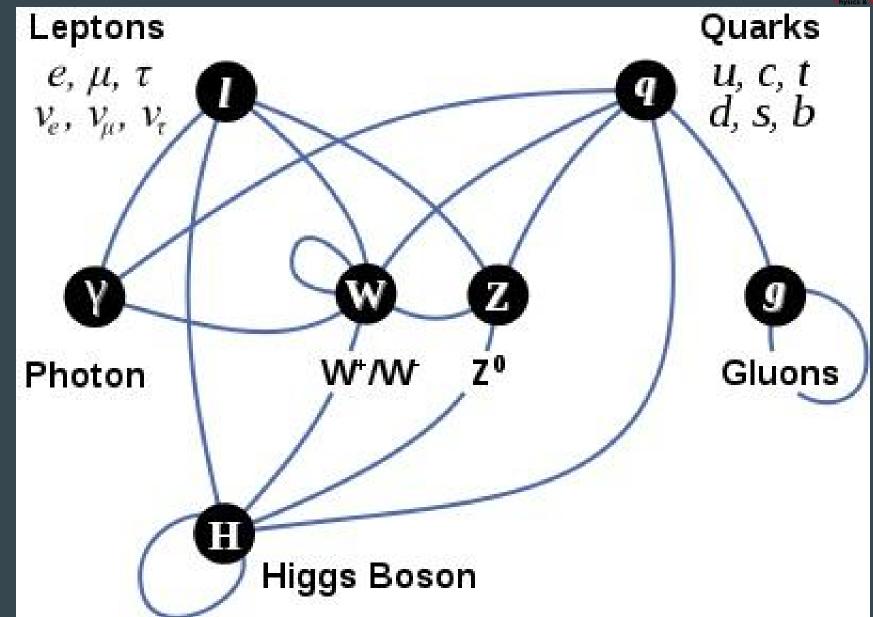
Physics Beyond the Standard Model

ปฏิภาณ อุทยารัตน์

 $\bullet \bullet \bullet$



Theoretical High Energy Physics & Astrophysics

โครงการอบรมฟิสิกส์อนุภาคพื้นฐาน 20 เมษายน 2560

The Standard Model of Particle Physics

 $-\tfrac{1}{2}\partial_\nu g^a_\mu\partial_\nu g^a_\mu - g_s f^{abc}\partial_\mu g^a_\nu g^b_\mu g^c_\nu - \tfrac{1}{4}g^2_s f^{abc} f^{ade} g^b_\mu g^c_\nu g^d_\mu g^e_\nu +$ $\frac{1}{2}ig_s^2(\bar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\mu \bar{G}^a G^b g_\mu^c - \partial_\nu W_\mu^+ \partial_\nu W_\mu^- M^2 W^+_\mu W^-_\mu - \tfrac{1}{2} \partial_\nu Z^0_\mu \partial_\nu Z^0_\mu - \tfrac{1}{2c_w^2} M^2 Z^0_\mu Z^0_\mu - \tfrac{1}{2} \partial_\mu A_\nu \partial_\mu A_\nu - \tfrac{1}{2} \partial_\mu H \partial_\mu H - \tfrac{1$ $\tfrac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \tfrac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \tfrac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\tfrac{2M^{2}}{g^{2}} +$ $\frac{2M}{q}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{q^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu \begin{array}{l} & W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} +$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$ $g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^- M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^- - M_\mu^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^- - M_\mu^-) + g^2 s_w c_w]$ $W^+_{\nu}W^-_{\mu}) - 2A_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}] - g\alpha[H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-] \tfrac{1}{8}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]$ $g M W^+_{\mu} W^-_{\mu} H - \tfrac{1}{2} g \tfrac{M}{c_w^2} Z^0_{\mu} Z^0_{\mu} H - \tfrac{1}{2} i g [W^+_{\mu} (\phi^0 \partial_{\mu} \phi^- - \phi^- \partial_{\mu} \phi^0) W^-_\mu(\phi^0\partial_\mu\phi^+-\phi^+\partial_\mu\phi^0)] + \frac{1}{2}g[W^+_\mu(H\partial_\mu\phi^--\phi^-\partial_\mu H) - W^-_\mu(H\partial_\mu\phi^+-\phi^-\partial_\mu H) - W^$ $\phi^+ \partial_\mu H)] + \tfrac{1}{2} g \tfrac{1}{c_w} (Z^0_\mu (H \partial_\mu \phi^0 - \phi^0 \partial_\mu H) - ig \tfrac{s^2_w}{c_w} M Z^0_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) + \\$ $igs_w MA_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) - ig \frac{1-2c_w^2}{2c_w}Z^0_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) +$ $igs_wA_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) - \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] \tfrac{1}{4}g^2\tfrac{1}{c_w^2}Z^0_\mu Z^0_\mu [H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \tfrac{1}{2}g^2\tfrac{s_w^2}{c_w}Z^0_\mu\phi^0(W^+_\mu\phi^- +$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s^{2}_{w}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} + W^{-}_{\mu}\phi^{+}))$ $W^{-}_{\mu}\phi^{+}) + \tfrac{1}{2}ig^{2}s_{w}A^{-}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - g^{2}\tfrac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z^{0}_{\mu}A_{\mu}\phi^{+}\phi^{-}$ $g^1 s_w^2 A_\mu \bar{A}_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{\nu}^\lambda \gamma \partial \bar{\nu}^\lambda - \bar{u}_j^\lambda (\gamma \partial + m_u^\lambda) u_j^\lambda \bar{d}_{j}^{\lambda}(\gamma\partial + m_{d}^{\lambda})d_{j}^{\lambda} + igs_{w}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{j}^{\lambda}\gamma^{\mu}u_{j}^{\lambda}) - \frac{1}{3}(\bar{d}_{j}^{\lambda}\gamma^{\mu}d_{j}^{\lambda})] +$ $\frac{ig}{4c_w}Z^0_\mu[(\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda)+(\bar{e}^\lambda\gamma^\mu(4s_w^2-1-\gamma^5)e^\lambda)+(\bar{u}_j^\lambda\gamma^\mu(\frac{4}{3}s_w^2-1-\gamma^5)e^\lambda)+(\bar{u}_j^\lambda\gamma^\mu(\frac{4}{3}s_w^2-1-\gamma^5)e^\lambda)+(\bar{u}_j^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda)+(\bar{e}^\lambda\gamma^\mu(1+\gamma^5)e^\lambda)+(\bar{e}^\lambda\gamma$ $(1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)\dot{k}^{\lambda}) + \dot{k}^{\lambda}] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)\dot{k}^{\lambda}) + \dot{k}^{\lambda}]$ $(\bar{u}_j^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W^{-}_{\mu}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda})] + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\prime}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\prime}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\prime}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\prime}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^$ $\gamma^5)u_j^{\lambda})] + \tfrac{ig}{2\sqrt{2}} \tfrac{m_{\lambda}^{\lambda}}{M} [-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})] \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})+i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})]+\frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})+$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\bar{d}_j^{\kappa}))]$ $\gamma^5)u_j^\kappa] - \frac{g}{2}\frac{m_{\rm a}^\lambda}{M}H(\bar{u}_j^\lambda u_j^\lambda) - \frac{g}{2}\frac{m_{\rm a}^\lambda}{M}H(\bar{d}_j^\lambda d_j^\lambda) + \frac{ig}{2}\frac{m_{\rm a}^\lambda}{M}\phi^0(\bar{u}_j^\lambda\gamma^5 u_j^\lambda) \frac{ig}{2} \frac{m_d^{\lambda}}{M} \phi^0(\bar{d}_j^{\lambda} \gamma^5 d_j^{\lambda}) + \bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - M^$ $\frac{M^2}{c_{-}^2}X^0 + \bar{Y}\partial^2 Y + igc_w W^+_\mu (\partial_\mu \bar{X}^0 X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0)$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$ $\partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \tfrac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \tfrac{1}{c_{*}^{2}}\bar{X}^{0}\bar{X}^{0}H] +$ $\tfrac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+-\bar{X}^-X^0\phi^-]+\tfrac{1}{2c_w}igM[\bar{X}^0X^-\phi^+-\bar{X}^0X^+\phi^-]+$ $\tilde{g}Ms_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

 $\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{AL} F^{AL} \\ &+ i F \mathcal{D} \mathcal{J} + h.c. \\ &+ \mathcal{J}_{ij} \mathcal{J}_{jj} \mathcal{J}_{jj} \mathcal{D} + h.c. \\ &+ \mathcal{J}_{ij} \mathcal{J}_{ij} \mathcal{J}_{jj} \mathcal{D} + h.c. \\ &+ |\mathcal{D}_{ij} \mathcal{D}_{ij}|^2 - V(\mathcal{D}) \end{aligned}$

3

The Success of the Standard Model

The Higgs Boson

- SM predicts an existence of a neutral spin-0 (boson) particle.
- After ~50 years search, ATLAS and CMS (at CERN) found it in 2012.

The Nobel Prize in Physics 2013 François Englert, Peter Higgs

Share this:

The Nobel Prize in Physics 2013



Photo: A. Mahmoud François Englert Prize share: 1/2

Photo: A. Mahmoud Peter W. Higgs Prize share: 1/2

g-factor of an Electron

- Ratio of magnetic dipole moment to spin
- Dirac equation predicts g = 2
- Anomalous g-factor (g/2)
 - Theory: 1. 001 159 652 177 60 (520)
 - Experiment: 1. 001 159 652 180 73 (28)

Many more successes for SM

Quantity	Value	Standard Model	Pull
$m_t { m [GeV]}$	173.34 ± 0.81	173.76 ± 0.76	- <mark>0.5</mark>
M_W [GeV]	80.387 ± 0.016	80.361 ± 0.006	1.6
	80.376 ± 0.033		0.4
Γ_W [GeV]	2.046 ± 0.049	2.089 ± 0.001	-0.9
	2.195 ± 0.083		1.3
$M_H [{ m GeV}]$	125.09 ± 0.24	125.11 ± 0.24	0.0
$\rho_{\gamma W}$	-0.03 ± 0.20	-0.02 ± 0.02	0.0
$\rho_{\tau Z}$	-0.27 ± 0.31	0.00 ± 0.03	-0.9
$g_V^{ u e}$	-0.040 ± 0.015	-0.0397 ± 0.0002	0.0
$g_A^{\nu e}$	-0.507 ± 0.014	-0.5064	0.0
$Q_W(e)$	-0.0403 ± 0.0053	-0.0473 ± 0.0003	1.3
$Q_W(p)$	0.064 ± 0.012	0.0708 ± 0.0003	-0.6
$Q_W(Cs)$	-72.62 ± 0.43	-73.25 ± 0.02	1.5
$Q_W(\mathrm{Tl})$	-116.4 ± 3.6	-116.91 ± 0.02	0.1
$\widehat{s}_Z^2(ext{eDIS})$	0.2299 ± 0.0043	0.23129 ± 0.00005	-0.3
$ au_{ au}~[{ m fs}]$	290.88 ± 0.35	289.85 ± 2.12	0.4
$rac{1}{2}(g_{\mu}-2-rac{lpha}{\pi})$	$(4511.18\pm0.78)\times10^{-9}$	$(4507.89\pm0.08)\times10^{-9}$	4.2

SM is not Enough!!!

Key Issues in Particle Physics

heretical High nergy hysics & A strophysics

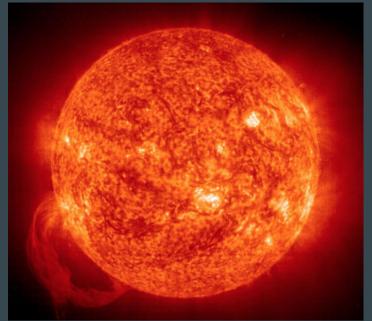
Experiment

- Neutrino
 - Neutrino oscillation
 - Nobel Prize: 2002, 2015
- Dark Matter

- Rotational curves of galaxies
- Bullet Cluster
- Why is there more matter than anti-matter?
 - Baryogenesis
 - CP Violation (Nobel Prize: 2011)

Theory

- Fine-tuning Problem
 - Why is the mass of the Higgs boson so "light"?
- Grand Unification
 - One fundamental interaction?
- Dark Energy


- Accelerated expansion of the universe
- Nobel Prize: 2011

Neutrino

Solar Neutrino Problem


- Nuclear reactions in the Sun produce neutrinos as a by product.
- We can detect these neutrinos on Earth.
- Homestake Experiment (1970)
 - Detected only ¹/₃ of the solar neutrinos were detected..
 - Nobel Prize in 2002.

Homestake Experiment

Where is the other $\frac{2}{3}$?

• Recall nuclear reaction in the Sun

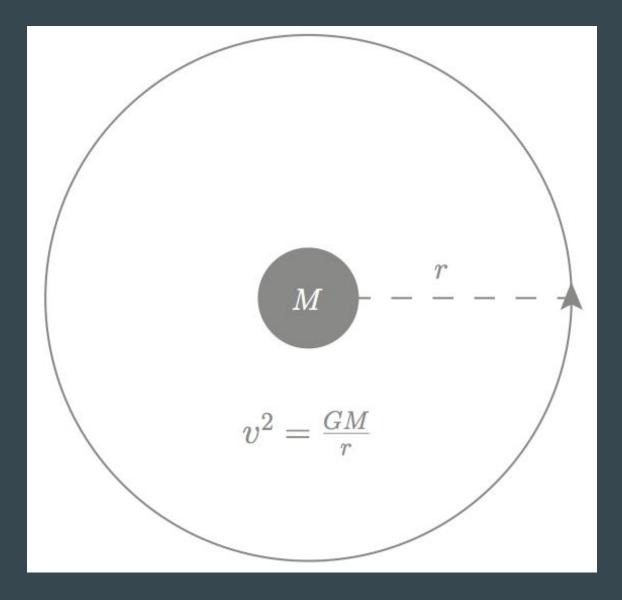
$$p + p \rightarrow d + e^+ + \nu_e$$

• Recall SM

- Homestake experiment can only detect $u_{_{\mathcal{A}}}$
- From the Sun \rightarrow Earth: $\nu_e \rightarrow \nu_{\mu}$, ν_{τ} (neutrino oscillation).
- Confirmed by Super-K and SNO (Nobel Prize 2015).

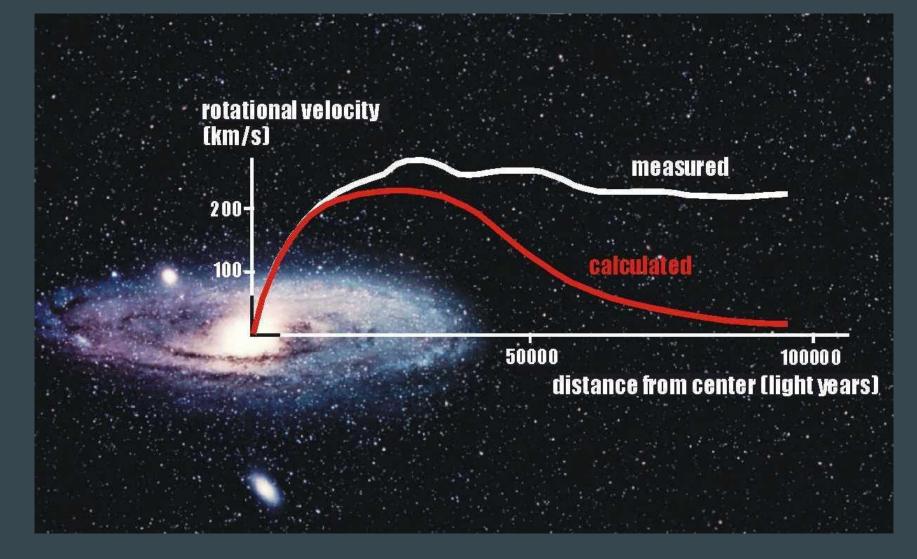
Neutrino Oscillation

- For oscillation to occur, neutrinos must have mass.
 - Need both left-handed and right-handed neutrinos.
 - (In QM: 3-state system with non-diag H.)
- In SM, neutrino is massless
 - All SM neutrinos are left-handed


Neutrino Oscillation = Beyond SM Physics!!

Dark Matter

Star orbital velocities



Rotational Curve of Andromeda

Physics & Astrophysics

Non-Iuminous Matter

- From the rotational curve, either
 - Newton is wrong!, or
 - Must be more mass than we can see!
- Newton is wrong:
 - Gravity behaves differently at large distant.
 - Modified Newtonian Dynamics (MOND).
- More mass than we can see:
 - Extra mass must not emit light, *"dark matter"*.
 - Most physicists believe in this option.

Weakly Interacting Matter

Weakly Interacting Matter

Normal Matter Dark Matter

What is dark matter?

- Things we know about DM:
 - Electrically neutral.
 - Not interact with regular stuff much.
 - Stable.
- Unfortunately, there is no particle in SM with such properties.

Dark Matter = Beyond SM Physics!!

Why there is more matter than antimatter?

When Matter Meets Antimatter

More Precise Statement

- Most stuff around us are baryons
 - Earth, moon, sun, etc.
- When the universe starts, there is nothing.
- Stuff are created later once the universe cooled down.
 - Naively, we expect baryons and anti-baryons are created equally.
 - Net baryon number = 0!
- How do we get more baryons than anti-barryon?

The process that creates baryon number is called baryogenesis.

Key Ingredients for Baryogenesis

- CP violation.
 - CP is a symmetry that relates matter and anti-matter.
 - In SM, this is provided by KM matrix (Nobel Prize 2008).
- Out of equilibrium process.
 - In equilibrium, process that generate baryon number and the reverse process cancel each other.
- \circ In SM, this is provided by the electroweak phase transition.

But in SM, both ingredients are too small.

Baryon asymmetry = Beyond SM Physics!!!

Key Issues in Particle Physics

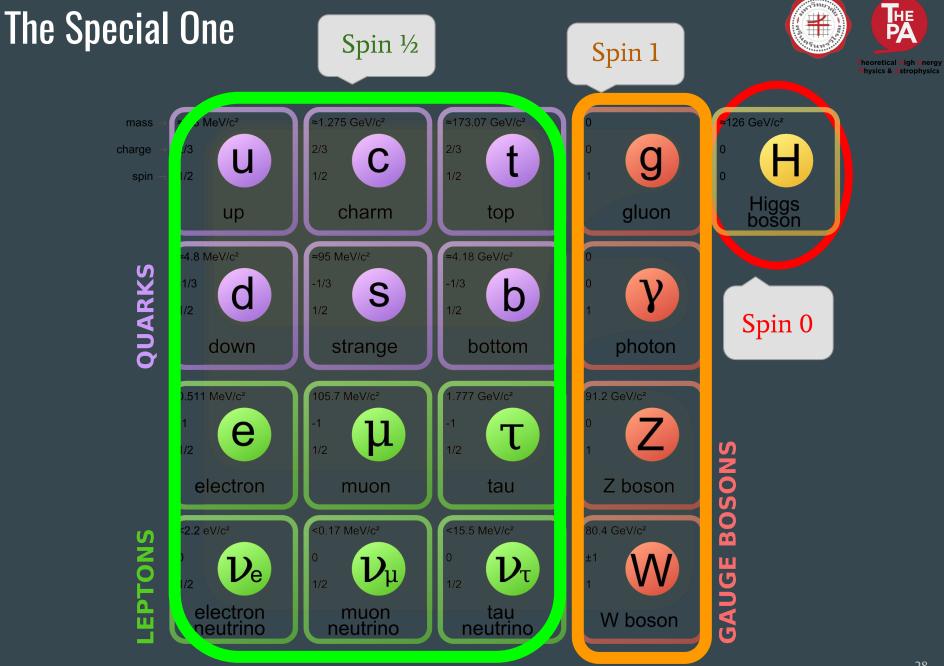
Heoretical High nergy Hysics & A strophysics

Experiment

- Neutrino
 - Neutrino oscillation
 - Nobel Prize: 2002, 2015
- Dark Matter

- Rotational curves of galaxies
- Bullet Cluster
- Why is there more matter than anti-matter?
 - Baryogensis.
 - CP Violation (Nobel Prize: 2011)

Theory


- Fine-tuning Problem
 - Why is the mass of the Higgs boson so "light"?
- Grand Unification
 - One fundamental interaction?
- Dark Energy

- Accelerated expansion of the universe
- Nobel Prize: 2011

Theoretical High Energy Physics & Astrophysics

Fine-Tuning Problem (why is the Higgs boson so light?)

Quantum Correction to the Higgs Mass

Total M_H 125 GeV

Classical

Quantum Corrections ~ 10¹⁹ GeV

Quantum Correction to the Higgs Mass

Quantum Total M_H Classical Corrections 125 GeV $\sim 10^{19} \, \text{GeV}$

Classical and Quantum Correction cancel each other to 1 in 10¹⁷!!!

Example of Fine-Tuning in Everyday Life

Net profit **B**125 a day Which one is more likely?

Possible Solutions to Fine-Tuning Problem

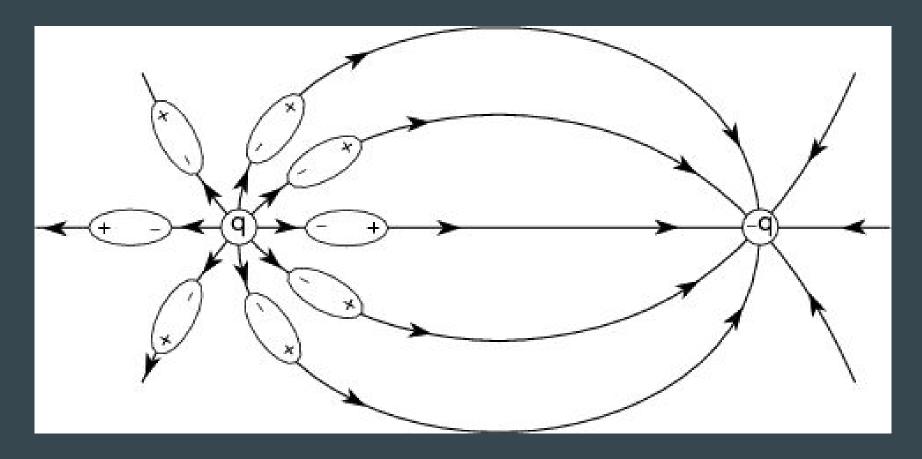
- Supersymmetry (SUSY)
 - The most "popular" scenario.
 - Tame quantum corrections. Render them "small".
- Higgs as a Goldstone Boson
 - Composite Higgs.
 - Little Higgs.
- Technicolor.

Theoretical High Energy Physics & Astrophysics

Grand Unification (the theory of almost everything)

The Importance of Scale

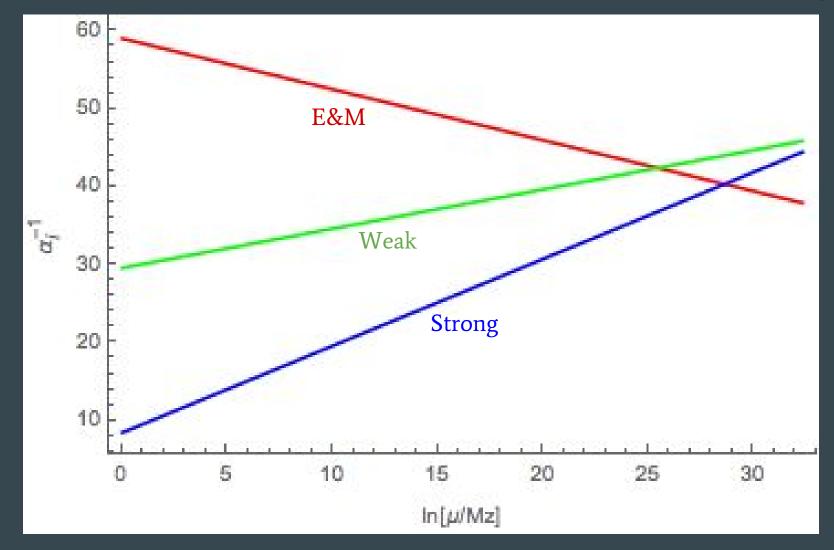
Strength of fundamental interaction
 E&M: interaction strength characterized by the fine structure constant


$$a = e^2/4\pi = 1/137$$

at the laboratory scale.

- Quantum effects change interaction strength.
 - Interaction strength depends on the scale that we probe them.

Vacuum Polarization

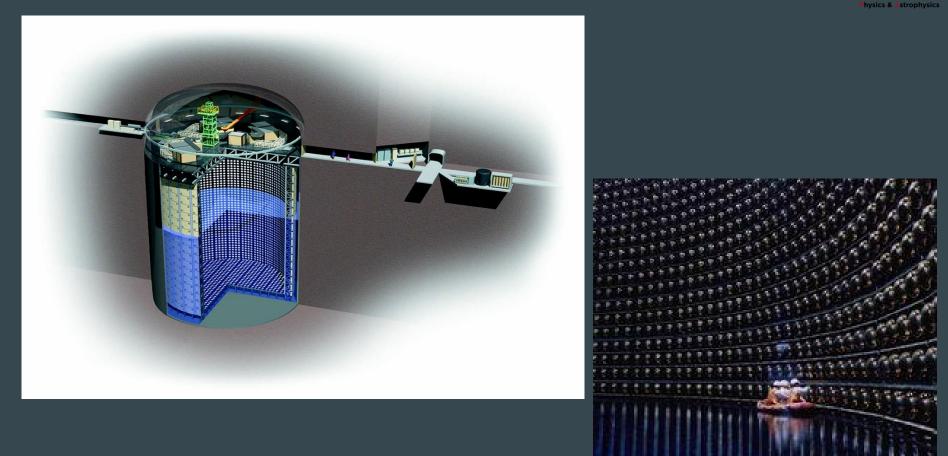


At large distance, there is a screening effect.

The 3 Interactions and the Scale

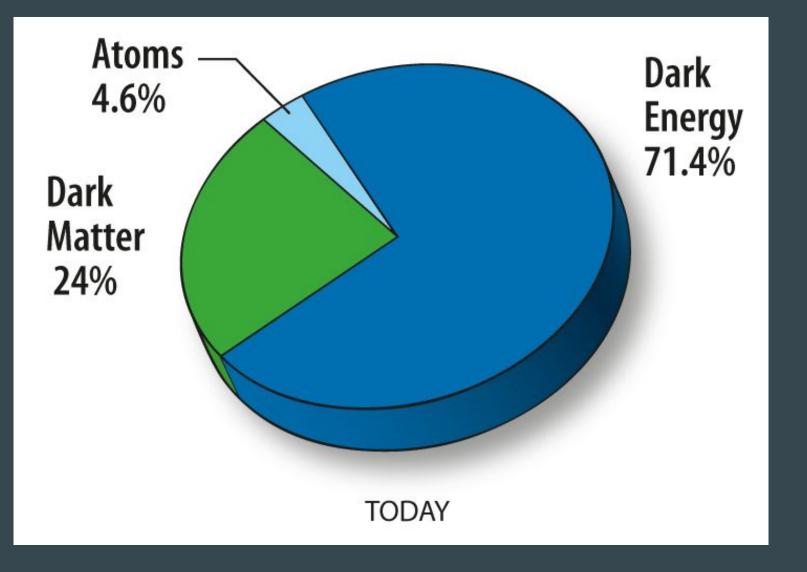
Theoretical High Energy Physics & Astrophysics

*Small distance = large mass scale

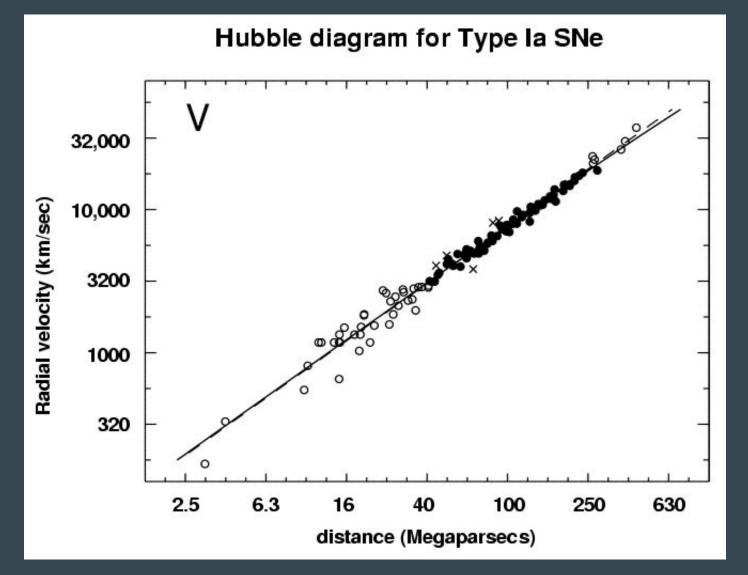

Grand Unification

- SM cannot unify the 3 interactions.
- New physics can unify them.
 - SUSY.
 - \circ Model with colored scalars.
 - 0
- The price of unification.
 - Proton decays.

Interesting History on Proton Decay


The KAMIOKANDE detector was built to search for proton decays. Instead, it discovered neutrino oscillation and won the Nobel Prize!

A Quick Word on Dark Energy


The Dark Universe

Distant Stars are Moving Away Faster!

The Accelerating Universe

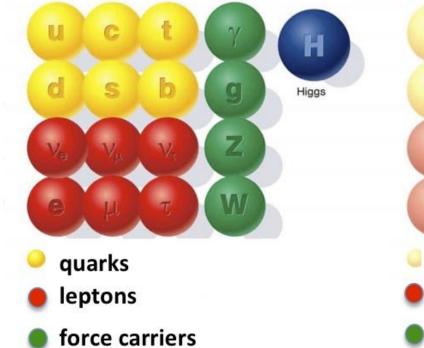
Vacuum Energy

- Empty space has energy (Einstein's cosmological constant)
 - This is the driving force for the accelerated expansion of the universe.
 - Energy is no longer conserved (globally).
- Generic SM calculation gives too big the answer.
 - SM can't explain why CC is small.
 - *Probably* need *new physics* for the explanation.

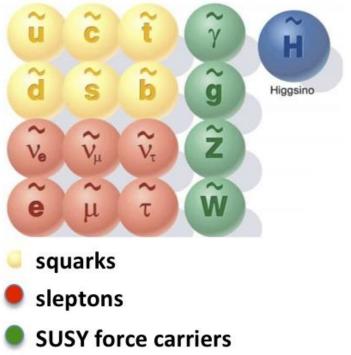
Theoretical High Energy Physics & Astrophysics

Ex: SUPERSYMMETRY (the dying star)

Why do we love SUSY?



- It solves many problems.
 - Gives a dark matter candidate.
 - Alleviate a fine-tuning problem.
 - Unifies the strong, the weak and the electromagnetic interactions.
 - (more elementary particles for the experiments to discovery).

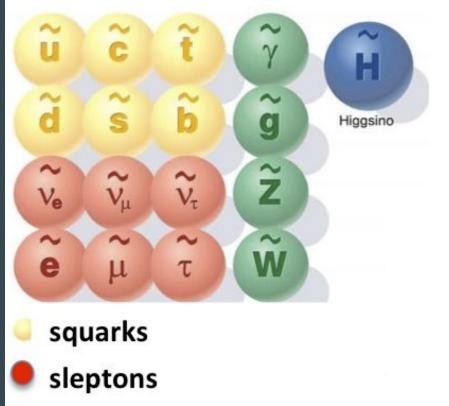

SUSY Relate Boson to Fermion

The known world of Standard Model particles

The hypothetical world of SUSY particles

Every particle comes with it supersymmetric partner.

SUSY and Dark Matter


- Lightest SUSY partner (LSP) of SM particle is stable.
- Lots of neutral particles:
 - Higgsino
 - o Zino
 - Bino
- If the LSP is neutral, it generically has a property suitable to explain the observed dark matter.

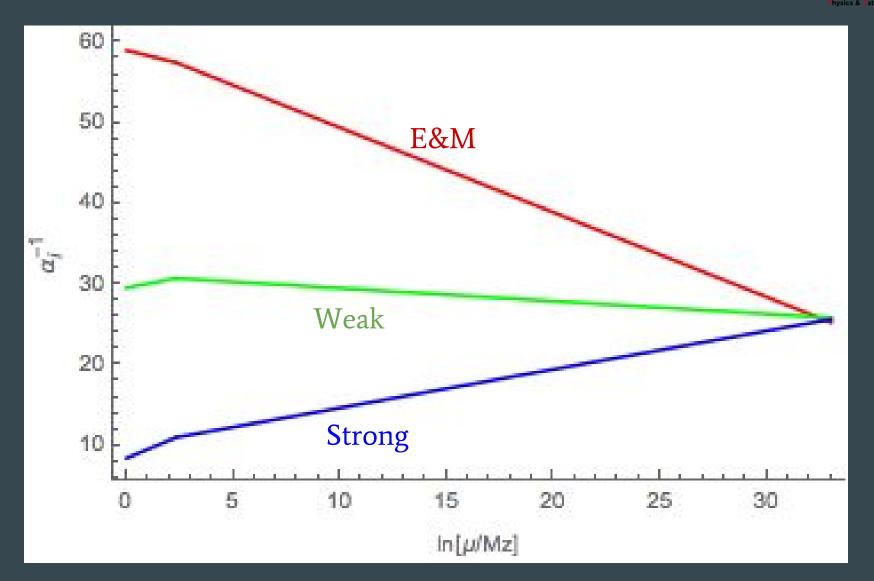
SUSY and Baryogenesis

- SUSY partners help:
 - More CP violation than just the KM matrix.
 - Enhance the electroweak phase transition.

The hypothetical world of SUSY particles

SUSY force carriers

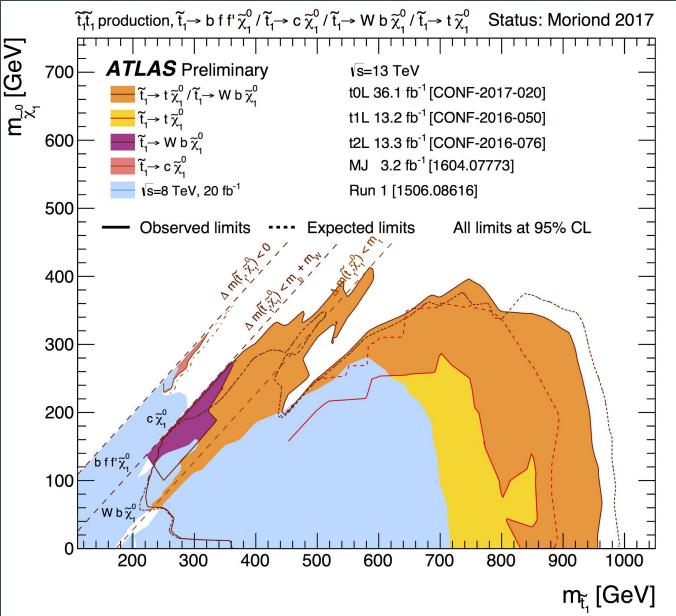
SUSY and Fine-Tuning



Cancel among themselve.

- SUSY makes quantum corrections (almost) cancel among themselve.
- No need for a large cancellation between classical and quantum contributions.

SUSY and Unification



SUSY vs Reality

hysics & Astrophysics

51

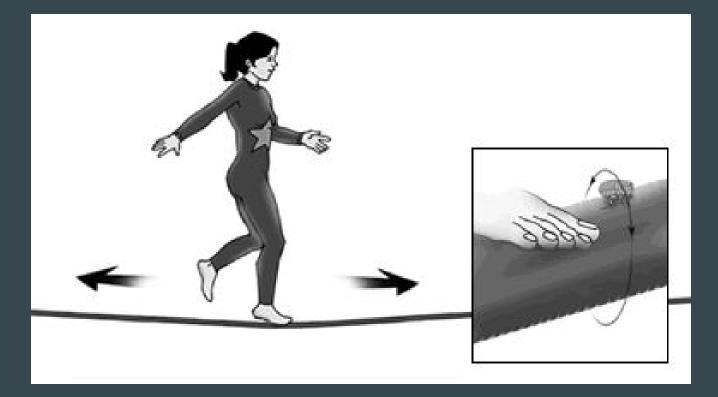
Take Home Message

Theoretical High Energy Physics & Astrophysics

- Standard Model works very well.
- But it's incompleted.
- New physics is needed for:
 - Dark Matter.
 - Neutrino mass.
- New physics is a possible solution for:
 - Cosmological constant problem.
 - Fine-tuning in the Higgs mass.
 - Grand Unification.

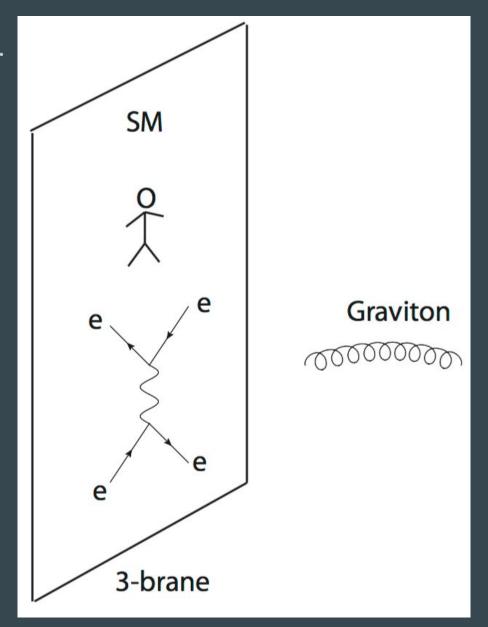
Theoretical High Energy Physics & Astrophysics

Bonus: Extra-Dimension (gravity is back!)


Gravity is weak

- Gravity from the earth cannot overcome magnetic force from a small magnet!
- This is why SM doesn't care about gravity.
- Why is gravity so weak compared to E&M, weak and strong force?

Why don't We See Extra-Dimension


- The lady can move only in 1-dimension.
- An insect on a rope can move in 2-dimension.

Gravity in XD

• Same strength as other forces.

• Appears weak because it's leaked out into the extra-dimension.

