Factorization, Renormalization and Resummation at Subleading Power

Ian Moult

Berkeley Center For Theoretical Physics/ Lawrence Berkeley Laboratory

with Iain Stewart, Gherardo Vita and HuaXing Zhu

SCET 2018

March 19, 2018 1 / 30

Limits of QCD

 Significant progress in understanding QCD made by considering limits where we have a power expansion in some small kinematic quantity.

• All orders behavior described by factorization theorems: $\frac{\mathrm{d}\sigma^{(0)}}{\mathrm{d}\tau} = \mathcal{H}^{(0)} J_{\tau}^{(0)} \otimes J_{\tau}^{(0)} \otimes S_{\tau}^{(0)} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q\tau}, \tau\right)$

SCET 2018

Power Corrections for Event Shapes

- "Standard" factorization theorems describe only leading term.
- More generally, can consider expanding an observable in $\boldsymbol{\tau}$

$$\frac{d\sigma}{d\tau} = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(0)} \left(\frac{\log^m \tau}{\tau}\right)_+ \text{ Leading Power (LP)} \\ + \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(2)} \log^m \tau \text{ Next to Leading Power (NLP)} \\ + \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n \sum_{m=0}^{2n-1} c_{nm}^{(4)} \tau \log^m \tau \\ + \cdots \\ = \frac{d\sigma^{(0)}}{d\tau} + \frac{d\sigma^{(2)}}{d\tau} + \frac{d\sigma^{(4)}}{d\tau} + \cdots$$

• Why do we want to understand power corrections?

Application: Fixed Order Subtractions

• IR divergences in fixed order calculations can be regulated using event shape observables. [Boughezal, Focke, Petriello, Liu], [Gaunt, Stahlhofen, Tackmann, Walsh]

$$\sigma(X) = \int_{0}^{} d\mathcal{T}_{N} \frac{d\sigma(X)}{d\mathcal{T}_{N}} = \int_{0}^{\mathcal{T}_{N}^{\text{cut}}} d\mathcal{T}_{N} \frac{d\sigma(X)}{d\mathcal{T}_{N}} + \int_{\mathcal{T}_{N}^{\text{cut}}}^{} d\mathcal{T}_{N} \frac{d\sigma(X)}{d\mathcal{T}_{N}}$$

Application: Bootstrap

- Bootstrap approaches aim to completely reconstruct amplitudes or cross sections from limits.
- Most success in planar $\mathcal{N} = 4$.
- Some recent applications in QCD.

Remaining Parameters in Symbol of 6-Point MHV Remainder Function

L = 2 L = 3 L = 4Constraint 1. Integrability 75 643 5897 2. Total S₃ symmetry 151 122420 3. Parity invariance 874 18 1204. Collinear vanishing (T^0) 4 59 622 5. OPE leading discontinuity 0 26482 6. Final entry 0 7. Multi-Regge limit 80 0 2 Near-collinear OPE (T^1) 0 9. Near-collinear OPE (T^2) 0

(日) (周) (三) (三)

[Li, Zhu][Duhr et al.]

Outline

• Factorization at Subleading Power in SCET

• Renormalization at Subleading Power

• Leading Log Resummation at Next-to-Leading Power for Thrust

 e^+

Factorization at Subleading Power in SCET

Image: A matrix and A matrix

Subleading Power SCET

• SCET naturally organizes power expansion

$$\mathcal{L}_{\mathsf{SCET}} = \mathcal{L}_{\mathrm{hard}} + \mathcal{L}_{\mathrm{dyn}} = \sum_{i \ge 0} \mathcal{L}_{\mathrm{hard}}^{(i)} + \sum_{i \ge 0} \mathcal{L}^{(i)}$$

Subleading Hard Scattering Operators

Subleading Lagrangians

Soft-Collinear Factorization at Subleading Power

- BPS field redefinition decouples LP soft and collinear interactions.
- Working in an expansion in τ (not α_s), subleading power Lagrangians enter as T-products:

$$\begin{split} \langle 0|T\{\tilde{O}_{j}^{(k)}(0) \exp[i\int d^{4}x \,\mathcal{L}_{dyn}]\}|X\rangle \\ &= \langle 0|T\{\tilde{O}_{j}^{(k)}(0) \exp[i\int d^{4}x \,(\mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \cdots)]\}|X\rangle \\ &= \langle 0|T\left\{\tilde{O}_{j}^{(k)}(0) \exp[i\int d^{4}x \mathcal{L}^{(0)}] \left(1 + i\int d^{4}y \mathcal{L}^{(1)} + \frac{1}{2} (i\int d^{4}y \mathcal{L}^{(1)}) (i\int d^{4}z \mathcal{L}^{(1)}) + i\int d^{4}z \mathcal{L}^{(2)} + \cdots\right)\right\}|X\rangle \\ &= \langle 0|T\left\{\tilde{O}_{j}^{(k)}(0) \left(1 + i\int d^{4}y \mathcal{L}^{(1)} + \frac{1}{2} (i\int d^{4}y \mathcal{L}^{(1)}) (i\int d^{4}z \mathcal{L}^{(2)}) + i\int d^{4}z \mathcal{L}^{(2)}\right)\right\}|X\rangle_{\mathcal{L}^{(0)}} + \cdots . \end{split}$$

- Only need to consider a finite number of insertions.
- Decoupling of leading power dynamics \implies states still factorize.

$$|X\rangle = |X_n\rangle |X_s\rangle$$

Gauge Invariant Ultrasoft Fields

- At subleading power, explicit ultrasoft fields appear.
- Wilson lines from field redefinition can be arranged into gauge invariant "gluon" operators plus Wilson lines (analogous to B_{⊥n} at leading power).

$$Y_{n_{i}}^{(r)\dagger}iD_{us}^{(r)\mu}Y_{n_{i}}^{(r)} = i\partial_{us}^{\mu} + [Y_{n_{i}}^{(r)\dagger}iD_{us}^{(r)\mu}Y_{n_{i}}^{(r)}] = i\partial_{us}^{\mu} + T_{(r)}^{a}g\mathcal{B}_{us(i)}^{a\mu}$$

• Provides gauge invariant description of soft sector at subleading power.

Factorization

- EFT makes subleading power factorization (at least formally) straightforward.
- Cross section expressed as matrix elements of gauge invariant fields:

$$\chi_n, \mathcal{B}_{\perp n}, \mathcal{P}_{\perp}, \mathcal{B}_{us(n)}^{a\mu}, \psi_{us(n)}, \partial_{us}^{\mu}, Y_n$$

- With interactions decoupled, just as at leading power, factorization amounts to manipulation into matrix elements of soft and collinear fields (with additional convolutions).
- Renormalization of these operators is significantly more complicated than at LP. It is required to sum subleading power logarithms.

Renormalization at Subleading Power for Thrust

Fixed Order Calculation

Compute power corrections for thrust at lowest order

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma^{(2)}}{\mathrm{d}\tau} = 8C_A \left(\frac{\alpha_s}{4\pi}\right) \left[\left(\frac{1}{\epsilon} + \log\frac{\mu^2}{Q^2\tau}\right) - \left(\frac{1}{\epsilon} + \log\frac{\mu^2}{Q^2\tau^2}\right) \right] \theta(\tau) + \mathcal{O}(\alpha_s^2) \\ = 8C_A \left(\frac{\alpha_s}{4\pi}\right) \log \tau \ \theta(\tau) + \mathcal{O}(\alpha_s^2)$$

- No virtual corrections at lowest order $(\delta(\tau) \sim 1/\tau)$.
- Divergences cancel between soft and collinear.
- Log appears at first non-vanishing order:
 - At LP, $\log(\tau)/\tau$ arises from RG evolution of $\delta(\tau)$
 - At NLP $log(\tau)$ arises from RG evolution of "nothing"?

An Important Illustrative Example

• Consider the power suppressed soft function:

$$S_{g,\tau\delta}^{(2)}(\tau,\mu) = \frac{1}{(N_c^2 - 1)} \operatorname{tr} \langle 0 | \mathcal{Y}_{\bar{n}}^T(0) \mathcal{Y}_n(0) \tau \ \delta(\tau - \hat{\tau}) \mathcal{Y}_n^T(0) \mathcal{Y}_{\bar{n}}(0) | 0 \rangle$$

This soft function vanishes at lowest order

$$S_{g,\tau\delta}^{(2)}(\tau,\mu)\Big|_{\mathcal{O}(\alpha_{\mathfrak{s}}^{0})} = \left| \begin{array}{c} & & \\$$

• It has a UV divergence at the first order

$$S_{g,\tau\delta}^{(2)}(\tau,\mu)\Big|_{\mathcal{O}(\alpha_{\mathfrak{s}})} = 2 \left(\begin{array}{c} & \mathcal{Y}_{\overline{n}} \\ & \mathcal{Y}_{\overline{n}} \\ & \downarrow \\ & \mathcal{Y}_{n} \end{array} \right) = g^{2}\theta(\tau) \left(\frac{1}{\epsilon} + \log\left(\frac{\mu^{2}}{(Q\tau)^{2}}\right) + \mathcal{O}(\epsilon) \right)$$

• What renormalizes this function?

An Important Illustrative Example

• Consider the power suppressed soft function:

$$S_{g,\tau\delta}^{(2)}(\tau,\mu) = \frac{1}{(N_c^2 - 1)} \operatorname{tr} \langle 0 | \mathcal{Y}_{\bar{n}}^T(0) \mathcal{Y}_n(0) \tau \ \delta(\tau - \hat{\tau}) \mathcal{Y}_n^T(0) \mathcal{Y}_{\bar{n}}(0) | 0 \rangle$$

This soft function vanishes at lowest order

$$S_{g,\tau\delta}^{(2)}(\tau,\mu)\Big|_{\mathcal{O}(\alpha_{\mathfrak{s}}^{0})} = \left| \begin{array}{c} & & \\$$

It has a UV divergence at the first order

$$S_{g,\tau\delta}^{(2)}(\tau,\mu)\Big|_{\mathcal{O}(\alpha_{\mathfrak{s}})} = 2 \left(\begin{array}{c} & \mathcal{Y}_{\overline{n}} \\ & \mathcal{Y}_{\overline{n}} \\ & \downarrow \\ & \mathcal{Y}_{n} \end{array} \right) = g^{2}\theta(\tau) \left(\frac{1}{\epsilon} + \log\left(\frac{\mu^{2}}{(Q\tau)^{2}}\right) + \mathcal{O}(\epsilon) \right)$$

• What renormalizes this function?

 \implies Mixing with another operator!

・ロト ・ 同ト ・ ヨト ・ ヨト

March 19, 2018

14 / 30

SCET 2018

An Important Illustrative Example

- We can use a simple trick to find the missing operator.
- The RG for the leading power soft function is known: $\mu \frac{dS_{g,\delta}^{(0)}(\tau,\mu)}{d\mu} = \int d\tau' \, 2\Gamma_{\rm cusp}^{g} \left(2 \left[\frac{\theta(\tau-\tau')}{\tau-\tau'} \right]_{+} - \log \left(\frac{\mu^2}{Q^2} \right) \delta(\tau-\tau') \right) S_{g,\delta}^{(0)}(\tau',\mu)$
- Multiplying by τ , we find

$$\mu \frac{d}{d\mu} \tau S_{g,\delta}^{(0)}(\tau,\mu) = \int d\tau' ((\tau-\tau')+\tau') \, 2\Gamma_{\text{cusp}}^g \left(2 \left[\frac{\theta(\tau-\tau')}{\tau-\tau'} \right]_+ -\log\left(\frac{\mu^2}{Q^2}\right) \delta(\tau-\tau') \right) S_{g,\delta}^{(0)}(\tau',\mu)$$

Simplifying, we have

$$\mu \frac{d}{d\mu} \tau S_{g,\delta}^{(0)}(\tau,\mu) = \int d\tau' \ 4\Gamma_{\rm cusp}^g \theta(\tau-\tau') S_{g,\delta}^{(0)}(\tau',\mu) + \int d\tau' \gamma_g^S(\tau-\tau') \tau' S_{g,\delta}^{(0)}(\tau',\mu)$$

Performing the integral, we have

$$\mu \frac{d}{d\mu} \tau S_{g,\delta}^{(0)}(\tau,\mu) = 4\Gamma_{\text{cusp}}^g S_{g,\theta}^{(2)}(\tau,\mu) + \int d\tau' \gamma_g^S(\tau-\tau',\mu)\tau' S_{g,\delta}^{(0)}(\tau',\mu)$$

Here we have defined a new power suppressed soft function

$$S_{g,\theta}^{(2)}(\tau,\mu) = \frac{1}{(N_c^2 - 1)} \operatorname{tr}\langle 0 | \mathcal{Y}_{\bar{n}}^T(0) \mathcal{Y}_{n}(0) \theta(\tau - \hat{\tau}) \mathcal{Y}_{n}^T(0) \mathcal{Y}_{\bar{n}}(0) | 0 \rangle$$

SCET 2018

Perturbative View

 Returning to our perturbative calculation of the subleading power soft function

$$S_{g,\tau\delta}^{(2)}(\tau,\mu)\Big|_{\mathcal{O}(\alpha_{s})} = 2 \left(\begin{array}{c} \mathcal{Y}_{\overline{n}} \\ \mathcal{Y}_{\overline{n}} \\ \mathcal{Y}_{n} \end{array} \right) = g^{2}\theta(\tau) \left(\frac{1}{\epsilon} + \log\left(\frac{\mu^{2}}{(Q\tau)^{2}}\right) + \mathcal{O}(\epsilon) \right)$$

• UV divergence now easily understood as mixing with θ function operator, which is non-vanishing at lowest order

$$S_{g,\theta}^{(2)}(\tau,\mu)\Big|_{\mathcal{O}(\alpha_{s}^{0})} = \left. \begin{array}{c} & \mathcal{Y}_{\overline{n}} \\ & \theta(\tau-\hat{\tau}) \\ & \Box \\ & \mathcal{Y}_{n} \end{array} \right. = \theta(\tau)$$

• Similar θ function counterterm observed by Paz in subleading power jet function at one-loop. Our example enables us to prove their all orders structure. March 19, 2018 16 / 30

θ -Function Operators

• At subleading power we require θ -jet and θ -soft functions

$$\begin{split} \int_{\mathcal{B}_{n,\theta}}^{(2)}(\tau,\mu) &= \frac{(2\pi)^3}{(N_c^2 - 1)} \operatorname{tr} \Big\langle 0 \Big| \, \mathcal{B}_{n\perp}^{\mu\mathfrak{a}}(0) \, \delta(Q + \bar{\mathcal{P}}) \delta^2(\mathcal{P}_{\perp}) \, \theta(\tau - \hat{\tau}) \, \mathcal{B}_{n\perp,\omega}^{\mu\mathfrak{a}}(0) \, \Big| 0 \Big\rangle \\ S_{g,\theta}^{(2)}(\tau,\mu) &= \frac{1}{(N_c^2 - 1)} \operatorname{tr} \langle 0 | \mathcal{Y}_{\bar{n}}^T(0) \mathcal{Y}_n(0) \theta(\tau - \hat{\tau}) \mathcal{Y}_{n}^T(0) \mathcal{Y}_{\bar{n}}(0) | 0 \Big\rangle \end{split}$$

- They are power suppressed due to θ(τ) ~ 1 instead of δ(τ) ~ 1/τ.
- Arise only through mixing at cross section level.
- We find this type of mixing is a generic behavior at subleading power.
- Extension to higher power straightforward

$$S_{g,(n,m),\theta}^{(n)}(\tau,\mu) = \frac{1}{(N_c^2 - 1)} \operatorname{tr} \langle 0 | \mathcal{Y}_{\bar{n}}^{\mathsf{T}}(0) \mathcal{Y}_{n}(0)(\tau - \hat{\tau})^m \hat{\tau}^{n-m} \theta(\tau - \hat{\tau}) \mathcal{Y}_{n}^{\mathsf{T}}(0) \mathcal{Y}_{\bar{n}}(0) | 0 \rangle$$

Renormalization

• These subleading jet and soft functions satisfy a 2×2 mixing RG

$$\begin{split} & \mu \frac{d}{d\mu} \begin{pmatrix} J^{(2)}_{\mathcal{B}_{n},\tau\delta}(\tau,\mu) \\ J^{(2)}_{\mathcal{B}_{n},\theta}(\tau,\mu) \end{pmatrix} = \int d\tau' \begin{pmatrix} \gamma^{J}_{\mathcal{B}_{n},\tau\delta \to \tau\delta}(\tau-\tau') & \gamma^{J}_{\mathcal{B}_{n},\tau\delta \to \theta}\delta(\tau-\tau') \\ 0 & \gamma^{J}_{\mathcal{B}_{n},\theta\to\theta}(\tau-\tau') \end{pmatrix} \begin{pmatrix} J^{(2)}_{\mathcal{B}_{n},\tau\delta}(\tau',\mu) \\ J^{(2)}_{\mathcal{B}_{n},\theta}(\tau',\mu) \end{pmatrix} \\ & \mu \frac{d}{d\mu} \begin{pmatrix} S^{(2)}_{\mathcal{E}_{\tau},\delta}(\tau,\mu) \\ S^{(2)}_{\mathcal{E}_{\tau},\delta}(\tau,\mu) \\ S^{(2)}_{\mathcal{E}_{\tau},\theta}(\tau,\mu) \end{pmatrix} = \int d\tau' \begin{pmatrix} \gamma^{S}_{\mathcal{E}_{\tau},\tau\delta\to\tau\delta}(\tau-\tau',\mu) & \gamma^{S}_{\mathcal{E}_{\tau},\tau\delta\to\theta}\delta(\tau-\tau') \\ 0 & \gamma^{S}_{\mathcal{E},\theta\to\theta}(\tau-\tau',\mu) \end{pmatrix} \begin{pmatrix} S^{(2)}_{\mathcal{E}_{\tau},\tau\delta}(\tau',\mu) \\ S^{(2)}_{\mathcal{E}_{\tau},0}(\tau',\mu) \end{pmatrix} \end{split}$$

- We can now solve this equation to renormalize the operators, and resum subleading power logarithms.
- · Consider for concreteness the soft function. Fourier transforming

$$\tilde{F}(y) = Q \int d\tau \ e^{-iQ\tau y/2} \ F(Q\tau)$$

we have

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \begin{pmatrix} \tilde{S}_{g,\tau\delta}^{(2)}(y,\mu) \\ \tilde{S}_{g,\theta}^{(2)}(y,\mu) \end{pmatrix} = \begin{pmatrix} \gamma_{11}(y,\mu) & \gamma_{12} \\ 0 & \gamma_{22}(y,\mu) \end{pmatrix} \begin{pmatrix} \tilde{S}_{g,\tau\delta}^{(2)}(y,\mu) \\ \tilde{S}_{g,\theta}^{(2)}(y,\mu) \end{pmatrix}$$

Solution of the RGE

• The general solution to this RG can be written as

$$\tilde{S}^{(2)}_{g,\tau\delta}(y,\mu) = e^{\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_{11} \log(iy\mu'e^{\gamma}E)} \left[\tilde{S}^{(2)}_{g,\tau\delta}(y,\mu_0) + X(\mu,\mu_0) \tilde{S}^{(2)}_{g,\theta}(y,\mu_0) \right]$$

• If $\gamma_{11} = \gamma_{22}$, as will occur in our case

$$X(\mu, \mu_{\mathcal{S}})|_{\gamma_{11}=\gamma_{22}} = \gamma_{12} \log\left(rac{\mu}{\mu_{\mathcal{S}}}
ight)$$

For LL, the boundary conditions are

$$S_{g,\tau\delta}^{(2)}(\tau,\mu_{5}) = 0 + \mathcal{O}(\alpha_{s}),$$

$$S_{g,\theta}^{(2)}(\tau,\mu_{5}) = \theta(\tau) + \mathcal{O}(\alpha_{s})$$

(日) (周) (三) (三)

Resummed Soft Function

• We find the final result for the renormalized subleading power soft function:

$$S_{g,\tau\delta}^{(2)}(Q\tau,\mu) = \theta(\tau)\gamma_{12}\log\left(\frac{\mu}{Q\tau}\right)e^{\frac{1}{2}\gamma_{11}\log^2\left(\frac{\mu}{Q\tau}\right)}$$

• Expanded perturbatively, we see a simple series:

$$S_{g, \tau \delta}^{(2)}(Q\tau, \mu) = \theta(\tau) \left[\gamma_{12} \log \left(\frac{\mu}{Q\tau} \right) + \frac{1}{2} \gamma_{12} \gamma_{11} \log^3 \left(\frac{\mu}{Q\tau} \right) + \cdots \right]$$

- In particular, we find
 - First log generated by mixing with the θ function operators.
 - The single log is then dressed by Sudakov double logs from the diagonal anomalous dimensions.
- Example also useful for understanding power suppressed RG consistency.

・ロト ・ 同ト ・ ヨト ・ ヨト

Leading Log Resummation at Next-to-Leading Power for Thrust in $H \rightarrow gg$

SCET 2018

LL Resummation for Thrust at NLP

• Simple playground is pure glue QCD for Thrust in H
ightarrow gg

- Represents simplest possible example to highlight features of subleading power resummation.
- Extension to NLL, inclusion of quark operators, etc. interesting but won't be covered here.

LL Resummation for Thrust at NLP

- Power corrections arise from two distinct sources:
 - Power corrections to scattering amplitudes.
 - Power corrections to kinematics.
- Each represent RG independent classes of power corrections:

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathsf{LL}}^{(2)}}{\mathrm{d}\tau} = \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathrm{kin,LL}}^{(2)}}{\mathrm{d}\tau} + \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathrm{hard,LL}}^{(2)}}{\mathrm{d}\tau}$$

- We will see that to LL, each class reduces to a mixing with θ function operators, equivalent to the 'illustrative' example shown above.
- This immediately implies exponentiation into a LL Sudakov for thrust at subleading power.

Matrix Element Corrections

[Moult, Stewart, Vita]

- Matrix element corrections arise from operators involving an additional B_{n⊥}, B_{us} or ∂_{us}.
- We have performed an explicit matching to the required operators

• Wilson coefficients of soft operators are fixed to all orders using RPI: $C^{(2)}_{\mathcal{B}(us(n))} = -\frac{\partial C^{(0)}}{\partial \omega_1}$

Factorization for Matrix Element Corrections

• By RG consistency, it is sufficient to consider the power suppressed soft function, involving a ∂_{us} or \mathcal{B}_{us}

$$\frac{1}{N_c}\operatorname{tr}\langle 0|\mathcal{Y}_{\bar{n}}^{T}(x)\mathcal{Y}_{n}(x)\bar{n}\cdot\mathcal{B}_{us(n)}(x)\delta(\tau_{us}-\hat{\tau}_{us})\mathcal{Y}_{n}^{T}(0)\mathcal{Y}_{\bar{n}}(0)|0\rangle = \int \frac{d^4r}{(2\pi)^4}e^{-ir\cdot x}S_{n\mathcal{B}_{us}}^{(2)}(\tau_{us},r)$$

which appears in the factorization as

 μ

$$\begin{aligned} \frac{d\sigma_{\mathcal{B}_{us},n}^{(2)}}{d\tau} &= H_{\bar{n}\cdot\mathcal{B}}(Q^2) \int d\tau_n d\tau_{\bar{n}} d\tau_{us} \delta(\tau - \tau_n - \tau_{\bar{n}} - \tau_{us}) \\ & \cdot \left[\int \frac{d^4r}{(2\pi)^4} S_{n\mathcal{B}_{us}}^{(2)}(\tau_{us},r) \right] \cdot \left[\int \frac{dk^-}{2\pi} \mathcal{J}_{\bar{n}}(\tau_{\bar{n}},k^-) \right] \cdot \left[\int \frac{dl^+}{2\pi} \mathcal{J}_n(\tau_n,l^+) \right] \end{aligned}$$

• These operators mix with a θ function soft function just as with the 'illustrative' example considered above. Resummation is identical.

$$\frac{d}{d\mu} \begin{pmatrix} S_{n\mathcal{B}_{us}}(\tau,\mu) \\ S_{g,\theta}(\tau,\mu) \end{pmatrix} = \int d\tau' \begin{pmatrix} \gamma_{g,\delta}^{S}(\tau-\tau',\mu) & \gamma_{n\mathcal{B}_{us}} \rightarrow \theta \delta(\tau-\tau') \\ 0 & \gamma_{g,\delta}^{S}(\tau-\tau',\mu) \end{pmatrix} \begin{pmatrix} S_{n\mathcal{B}_{us}}(\tau',\mu) \\ S_{g,\theta}(\tau',\mu) \end{pmatrix}$$
SCET 2018 March 19, 2018 25 / 30

Kinematic Corrections

- Kinematic corrections arise from
 - Phase space
 - Thrust observable definition (does not contribute at LL)
- Phase space corrections can be treated through choice of routing

• Are described by the 'illustrative' example considered above

$$\mu \frac{d}{d\mu} \left(\begin{array}{c} S^{(2)}_{g,\tau\delta}(\tau,\mu) \\ S^{(2)}_{g,\theta}(\tau,\mu) \end{array} \right) = \int d\tau' \left(\begin{array}{c} \gamma^{S}_{g,\tau\delta\to\tau\delta}(\tau-\tau',\mu) & \gamma^{S}_{g,\tau\delta\to\theta}\delta(\tau-\tau') \\ 0 & \gamma^{S}_{g,\theta\to\theta}(\tau-\tau',\mu) \end{array} \right) \left(\begin{array}{c} S^{(2)}_{g,\tau\delta}(\tau',\mu) \\ S^{(2)}_{g,\theta}(\tau',\mu) \end{array} \right)$$

LL Resummation for Thrust at NLP [Moult, Stewart, Vita, Zhu]

• Complete result given by sum of two contributions.

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\text{LL}}^{(2)}}{\mathrm{d}\tau} = \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathrm{kin},\text{LL}}^{(2)}}{\mathrm{d}\tau} + \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathrm{hard},\text{LL}}^{(2)}}{\mathrm{d}\tau}$$

- Both have same Sudakov \implies can be directly added.
- Obtain the LL resummed result for pure glue H
 ightarrow gg thrust

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\mathrm{LL}}^{(2)}}{\mathrm{d}\tau} = \left(\frac{\alpha_{\mathrm{s}}}{4\pi}\right) 8C_{\mathrm{A}} \log(\tau) e^{-\frac{\alpha_{\mathrm{s}}}{4\pi} \Gamma_{\mathrm{cusp}}^{\mathrm{g}} \log^2(\tau)}$$

- Provides the first all orders resummation for an event shape at subleading power.
- Very simple result. Subleading power LL driven by cusp anomalous dimension!

Fixed Order Check

- We can explicitly check this result by fixed order calculation of the power corrections.
- RG consistency for $1/\epsilon$ poles implies that the LL power correction can be computed only from hard-collinear contributions:

$$\frac{1}{\sigma_{H}^{0}}\frac{\mathrm{d}\sigma^{H}}{\mathrm{d}\tau} = \frac{\alpha_{s}}{4\pi}8C_{A}\log\tau - \left(\frac{\alpha_{s}}{4\pi}\right)^{2}32C_{A}^{2}\log^{3}\tau + \left(\frac{\alpha_{s}}{4\pi}\right)^{3}64C_{A}^{3}\log^{5}\tau + \mathcal{O}(\alpha_{s}^{4})$$

• Provides a highly non-trivial check on the correctness of our all orders resummation.

[Moult, Rothen, Stewart, Tackmann, Zhu]

< ロト < 同ト < ヨト < ヨト

Conclusions

- SCET provides convenient organization of power expansion in terms of gauge invariants operators that can be separately renormalized.
- Cross section level renormalization at subleading power involves a new class of universal jet and soft functions involving θ-functions.
- Achieved first all orders resummation at subleading power for an event shape observable.

March 19, 2018

29 / 30

Thanks!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○