Factorization, Renormalization and Resummation at Subleading Power

Ian Moult

Berkeley Center For Theoretical Physics/ Lawrence Berkeley Laboratory
with lain Stewart, Gherardo Vita and HuaXing Zhu

Limits of QCD

- Significant progress in understanding QCD made by considering limits where we have a power expansion in some small kinematic quantity.

Collinear

Soft
Regge

- All orders behavior described by factorization theorems:

$$
\frac{\mathrm{d} \sigma^{(0)}}{\mathrm{d} \tau}=H^{(0)} J_{\tau}^{(0)} \otimes J_{\tau}^{(0)} \otimes S_{\tau}^{(0)}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q \tau}, \tau\right)
$$

Power Corrections for Event Shapes

- "Standard" factorization theorems describe only leading term.
- More generally, can consider expanding an observable in τ

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \tau} & =\sum_{n=0}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n^{2}} \sum_{m=0}^{2 n-1} c_{n m}^{(0)}\left(\frac{\log ^{m} \tau}{\tau}\right)_{+} \quad \text { Leading Power (LP) } \\
& +\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(2)} \log ^{m} \tau \quad \text { Next to Leading Power (NLP) } \\
& +\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \sum_{m=0}^{2 n-1} c_{n m}^{(4)} \tau \log ^{m} \tau \\
& +\cdots \\
& =\frac{d \sigma^{(0)}}{d \tau}+\frac{d \sigma^{(2)}}{d \tau}+\frac{d \sigma^{(4)}}{d \tau}+\cdots
\end{aligned}
$$

- Why do we want to understand power corrections?

Application: Fixed Order Subtractions

- IR divergences in fixed order calculations can be regulated using event shape observables.
[Boughezal, Focke, Petriello, Liu], [Gaunt, Stahlhofen,Tackmann, Walsh]

$$
\sigma(X)=\int_{0} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}=\int_{0}^{\mathcal{T}_{N}^{\text {cut }}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}+\int_{\substack{\mathcal{T}_{N}^{\text {cut }}}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}
$$

$$
\int_{0}^{\mathcal{T}_{N}^{\mathrm{cut}}} d \mathcal{T}_{N} \frac{d \sigma(X)}{d \mathcal{T}_{N}}
$$

Compute using factorization in soft/collinear limits:

Power Correction

$$
\frac{d \sigma}{d \tau_{N}}=H B_{a} \otimes B_{b} \otimes S \otimes J_{1} \otimes \cdots \otimes J_{N-1}+\mathcal{O}\left(\tau_{N}\right)
$$

Application: Bootstrap

- Bootstrap approaches aim to completely reconstruct amplitudes or cross sections from limits.
- Most success in planar $\mathcal{N}=4$.
- Some recent applications in QCD. [Li, zhul[Duhr et al.]

Remaining Parameters in Symbol of 6-Point MHV Remainder Function

Constraint	$L=2$	$L=3$	$L=4$
1. Integrability	75	643	5897
2. Total S_{3} symmetry	20	151	1224
3. Parity invariance	18	120	874
4. Collinear vanishing $\left(T^{0}\right)$	4	59	622
5. OPE leading discontinuity	0	26	482
6. Final entry	0	2	113
7. Multi-Regge limit	0	2	80
8. Near-collinear OPE $\left(T^{1}\right)$	0	0	4
9. Near-collinear OPE $\left(T^{2}\right)$	0	0	0

[Basso, Sever, Vieira]
[Dixon et al.]

Outline

- Factorization at Subleading Power in SCET

- Renormalization at Subleading Power

- Leading Log Resummation at Next-to-Leading Power for Thrust

Factorization at Subleading Power in SCET

Subleading Power SCET

- SCET naturally organizes power expansion

$$
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{\text {hard }}+\mathcal{L}_{\text {dyn }}=\sum_{i \geq 0} \mathcal{L}_{\text {hard }}^{(i)}+\sum_{i \geq 0} \mathcal{L}^{(i)}
$$

Subleading Hard Scattering Operators

Subleading Lagrangians

Soft-Collinear Factorization at Subleading Power

- BPS field redefinition decouples LP soft and collinear interactions.
- Working in an expansion in τ (not α_{s}), subleading power Lagrangians enter as T-products:

$$
\begin{aligned}
& \langle 0| T\left\{\tilde{O}_{j}^{(k)}(0) \exp \left[i \int d^{4} x \mathcal{L}_{\text {dyn }}\right]\right\}|X\rangle \\
& =\langle 0| T\left\{\tilde{O}_{j}^{(k)}(0) \exp \left[i \int d^{4} \times\left(\mathcal{L}^{(0)}+\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\cdots\right)\right]\right\}|X\rangle \\
& =\langle 0| T\left\{\tilde{O}_{j}^{(k)}(0) \exp \left[i \int d^{4} \times \mathcal{L}^{(0)}\right]\left(1+i \int d^{4} y \mathcal{L}^{(1)}+\frac{1}{2}\left(i \int d^{4} y \mathcal{L}^{(1)}\right)\left(i \int d^{4} z \mathcal{L}^{(1)}\right)+i \int d^{4} z \mathcal{L}^{(2)}+\cdots\right)\right\}|X\rangle \\
& =\langle 0| T\left\{\tilde{O}_{j}^{(k)}(0)\left(1+i \int d^{4} y \mathcal{L}^{(1)}+\frac{1}{2}\left(i \int d^{4} y \mathcal{L}^{(1)}\right)\left(i \int d^{4} z \mathcal{L}^{(1)}\right)+i \int d^{4} z \mathcal{L}^{(2)}\right)\right\}|X\rangle_{\mathcal{L}^{(0)}}+\cdots .
\end{aligned}
$$

- Only need to consider a finite number of insertions.
- Decoupling of leading power dynamics \Longrightarrow states still factorize.

$$
|X\rangle=\left|X_{n}\right\rangle\left|X_{s}\right\rangle
$$

Gauge Invariant Ultrasoft Fields

- At subleading power, explicit ultrasoft fields appear.
- Wilson lines from field redefinition can be arranged into gauge invariant "gluon" operators plus Wilson lines (analogous to $\mathcal{B}_{\perp n}$ at leading power).

$$
Y_{n_{i}}^{(r) \dagger} i D_{u s}^{(r) \mu} Y_{n_{i}}^{(r)}=i \partial_{u s}^{\mu}+\left[Y_{n_{i}}^{(r) \dagger} i D_{u s}^{(r) \mu} Y_{n_{i}}^{(r)}\right]=i \partial_{u s}^{\mu}+T_{(r)}^{a} g \mathcal{B}_{u s(i)}^{a \mu}
$$

- Provides gauge invariant description of soft sector at subleading power.

Factorization

- EFT makes subleading power factorization (at least formally) straightforward.
- Cross section expressed as matrix elements of gauge invariant fields:

$$
\chi_{n}, \mathcal{B}_{\perp n}, \mathcal{P}_{\perp}, \mathcal{B}_{u s(n)}^{a \mu}, \psi_{u s(n)}, \partial_{u s}^{\mu}, Y_{n}
$$

- With interactions decoupled, just as at leading power, factorization amounts to manipulation into matrix elements of soft and collinear fields (with additional convolutions).
- Renormalization of these operators is significantly more complicated than at LP. It is required to sum subleading power logarithms.

Renormalization at Subleading Power for Thrust

Fixed Order Calculation

- Compute power corrections for thrust at lowest order

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma^{(2)}}{\mathrm{d} \tau} & =8 C_{A}\left(\frac{\alpha_{s}}{4 \pi}\right)\left[\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{Q^{2} \tau}\right)-\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{Q^{2} \tau^{2}}\right)\right] \theta(\tau)+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& =8 C_{A}\left(\frac{\alpha_{s}}{4 \pi}\right) \log \tau \theta(\tau)+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

- No virtual corrections at lowest order $(\delta(\tau) \sim 1 / \tau)$.
- Divergences cancel between soft and collinear.
- Log appears at first non-vanishing order:
- At LP, $\log (\tau) / \tau$ arises from RG evolution of $\delta(\tau)$
- At NLP $\log (\tau)$ arises from RG evolution of "nothing"?

An Important Illustrative Example

- Consider the power suppressed soft function:

$$
S_{g, \tau \delta}^{(2)}(\tau, \mu)=\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \tau \delta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle
$$

- This soft function vanishes at lowest order

$$
\left.s_{\xi, \tau \delta}^{(2)}(\tau, \mu)\right|_{\mathcal{O}\left(0_{s}^{0}\right)}=
$$

- It has a UV divergence at the first order
- What renormalizes this function?

An Important Illustrative Example

- Consider the power suppressed soft function:

$$
S_{g, \tau \delta}^{(2)}(\tau, \mu)=\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \tau \delta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle
$$

- This soft function vanishes at lowest order

$$
\left.s_{g, \tau \delta}^{(2)}(\tau, \mu)\right|_{\mathcal{O}\left(\alpha_{s}^{0}\right)}=
$$

- It has a UV divergence at the first order
- What renormalizes this function?
\Longrightarrow Mixing with another operator!

An Important Illustrative Example

- We can use a simple trick to find the missing operator.
- The RG for the leading power soft function is known:

$$
\mu \frac{d S_{g, \delta}^{(0)}(\tau, \mu)}{d \mu}=\int d \tau^{\prime} 2 \Gamma_{\text {cusp }}^{g}\left(2\left[\frac{\theta\left(\tau-\tau^{\prime}\right)}{\tau-\tau^{\prime}}\right]_{+}-\log \left(\frac{\mu^{2}}{Q^{2}}\right) \delta\left(\tau-\tau^{\prime}\right)\right) S_{g, \delta}^{(0)}\left(\tau^{\prime}, \mu\right)
$$

- Multiplying by τ, we find

$$
\mu \frac{d}{d \mu} \tau S_{g, \delta}^{(0)}(\tau, \mu)=\int d \tau^{\prime}\left(\left(\tau-\tau^{\prime}\right)+\tau^{\prime}\right) 2 \Gamma_{\text {cusp }}^{g}\left(2\left[\frac{\theta\left(\tau-\tau^{\prime}\right)}{\tau-\tau^{\prime}}\right]_{+}-\log \left(\frac{\mu^{2}}{Q^{2}}\right) \delta\left(\tau-\tau^{\prime}\right)\right) S_{g, \delta}^{(0)}\left(\tau^{\prime}, \mu\right)
$$

- Simplifying, we have

$$
\left.\mu \frac{d}{d \mu} \tau \int_{g, \delta}^{(0)}(\tau, \mu)=\int d \tau^{\prime} 4 \Gamma_{\text {cusp }}^{g} \theta\left(\tau-\tau^{\prime}\right)\right)_{g, \delta}^{(0)}\left(\tau^{\prime}, \mu\right)+\int d \tau^{\prime} \gamma_{g}^{S}\left(\tau-\tau^{\prime}\right) \tau^{\prime} S_{g, \delta}^{(0)}\left(\tau^{\prime}, \mu\right)
$$

- Performing the integral, we have

$$
\mu \frac{d}{d \mu} \tau S_{g, \delta}^{(0)}(\tau, \mu)=4 \Gamma_{\text {cusp }}^{g} S_{g, \theta}^{(2)}(\tau, \mu)+\int d \tau^{\prime} \tau_{g}^{S}\left(\tau-\tau^{\prime}, \mu\right) \tau^{\prime} S_{g, \delta}^{(0)}\left(\tau^{\prime}, \mu\right)
$$

- Here we have defined a new power suppressed soft function

$$
S_{g, \theta}^{(2)}(\tau, \mu)=\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \theta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle
$$

Perturbative View

- Returning to our perturbative calculation of the subleading power soft function
- UV divergence now easily understood as mixing with θ function operator, which is non-vanishing at lowest order

- Similar θ function counterterm observed by Paz in subleading power jet function at one-loop. Our example enables us to prove their all orders structure.

θ-Function Operators

- At subleading power we require θ-jet and θ-soft functions

$$
\begin{aligned}
J_{\mathcal{B}_{n}, \theta}^{(2)}(\tau, \mu) & =\frac{(2 \pi)^{3}}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{B}_{n \perp}^{\mu a}(0) \delta(Q+\overline{\mathcal{P}}) \delta^{2}\left(\mathcal{P}_{\perp}\right) \theta(\tau-\hat{\tau}) \mathcal{B}_{n \perp, \omega}^{\mu a}(0)|0\rangle \\
S_{\varepsilon, \theta}^{(2)}(\tau, \mu) & =\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0) \theta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}(0)}(0)|0\rangle
\end{aligned}
$$

- They are power suppressed due to $\theta(\tau) \sim 1$ instead of $\delta(\tau) \sim 1 / \tau$.
- Arise only through mixing at cross section level.
- We find this type of mixing is a generic behavior at subleading power.
- Extension to higher power straightforward

$$
S_{g,(n, m), \theta}^{(n)}(\tau, \mu)=\frac{1}{\left(N_{c}^{2}-1\right)} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(0) \mathcal{Y}_{n}(0)(\tau-\hat{\tau})^{m} \hat{\tau}^{n-m} \theta(\tau-\hat{\tau}) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle
$$

Renormalization

- These subleading jet and soft functions satisfy a 2×2 mixing RG

$$
\begin{aligned}
\mu \frac{d}{d \mu}\binom{J_{\mathcal{B}_{n}, \tau \delta}^{(2)}(\tau, \mu)}{J_{\mathcal{B}_{n}, \theta}^{(2)}(\tau, \mu)} & =\int d \tau^{\prime}\left(\begin{array}{cc}
\gamma_{\mathcal{B}_{n}, \tau \delta \rightarrow \tau \delta}^{J}\left(\tau-\tau^{\prime}\right) & \gamma_{\mathcal{B}_{\eta}, \tau \delta \rightarrow \theta}^{J}\left(\tau-\tau^{\prime}\right) \\
0 & \gamma_{\mathcal{B}_{n}, \theta \rightarrow \theta}\left(\tau-\tau^{\prime}\right)
\end{array}\right)\binom{J_{\mathcal{B}_{n}, \tau \delta}^{(2)}\left(\tau^{\prime}, \mu\right)}{J_{\mathcal{B}_{n}, \theta}^{(2)}\left(\tau^{\prime}, \mu\right)} \\
\mu \frac{d}{d \mu}\binom{S_{g, \tau \delta}^{(2)}(\tau, \mu)}{S_{g, \theta}^{(2)}(\tau, \mu)} & =\int d \tau^{\prime}\left(\begin{array}{cc}
\gamma_{g, \tau \delta \rightarrow \tau \delta}^{S}\left(\tau-\tau^{\prime}, \mu\right) & \gamma_{g}^{S}, \tau \delta \rightarrow \theta \delta\left(\tau-\tau^{\prime}\right) \\
0 & \gamma_{g, \theta \rightarrow \theta}^{S}\left(\tau-\tau^{\prime}, \mu\right)
\end{array}\right)\binom{S_{g, \tau \delta}^{(2)}\left(\tau^{\prime}, \mu\right)}{S_{g, \theta}^{(2)}\left(\tau^{\prime}, \mu\right)}
\end{aligned}
$$

- We can now solve this equation to renormalize the operators, and resum subleading power logarithms.
- Consider for concreteness the soft function. Fourier transforming

$$
\tilde{F}(y)=Q \int d \tau e^{-i Q \tau y / 2} F(Q \tau)
$$

we have

$$
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu}\binom{\tilde{S}_{g}^{(2)}(y, \delta}{\tilde{S}_{g, \theta}^{(2)}(y, \mu)}=\left(\begin{array}{cc}
\gamma_{11}(y, \mu) & \gamma_{12} \\
0 & \gamma_{22}(y, \mu)
\end{array}\right)\binom{\tilde{S}_{g}^{(2)}(y, \delta, \mu)}{\tilde{S}_{g, \theta}^{(2)}(y, \mu)}
$$

Solution of the RGE

- The general solution to this RG can be written as

$$
\tilde{s}_{\xi, \tau \delta}^{(2)}(y, \mu)=e^{\frac{\mu}{\mu_{0}} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{11} \log \left(\dot{y} \mu^{\prime} \mathrm{e}^{\prime} \gamma_{E}\right)}\left[\tilde{S}_{\xi, \tau \delta}^{(2)}\left(y, \mu_{0}\right)+X\left(\mu, \mu_{0}\right) \tilde{5}_{\xi, \theta}^{(2)}\left(y, \mu_{0}\right)\right]
$$

- If $\gamma_{11}=\gamma_{22}$, as will occur in our case

$$
\left.x\left(\mu, \mu_{S}\right)\right|_{\gamma_{11}=\gamma_{22}}=\gamma_{12} \log \left(\frac{\mu}{\mu_{S}}\right)
$$

- For LL, the boundary conditions are

$$
\begin{aligned}
S_{g, \tau \delta}^{(2)}\left(\tau, \mu_{S}\right) & =0+\mathcal{O}\left(\alpha_{S}\right) \\
s_{g, \theta}^{(2)}\left(\tau, \mu_{S}\right) & =\theta(\tau)+\mathcal{O}\left(\alpha_{S}\right)
\end{aligned}
$$

Resummed Soft Function

- We find the final result for the renormalized subleading power soft function:

$$
s_{g, \tau \delta}^{(2)}(Q \tau, \mu)=\theta(\tau) \gamma_{12} \log \left(\frac{\mu}{Q \tau}\right) e^{\frac{1}{2} \gamma_{11} \log ^{2}\left(\frac{\mu}{Q \tau}\right)}
$$

- Expanded perturbatively, we see a simple series:

$$
S_{g, \tau \delta}^{(2)}(Q \tau, \mu)=\theta(\tau)\left[\gamma_{12} \log \left(\frac{\mu}{Q \tau}\right)+\frac{1}{2} \gamma_{12} \gamma_{11} \log ^{3}\left(\frac{\mu}{Q \tau}\right)+\cdots\right]
$$

- In particular, we find
- First log generated by mixing with the θ function operators.
- The single log is then dressed by Sudakov double logs from the diagonal anomalous dimensions.
- Example also useful for understanding power suppressed RG consistency.

Leading Log Resummation at Next-to-Leading Power for Thrust in $H \rightarrow g g$

LL Resummation for Thrust at NLP

- Simple playground is pure glue QCD for Thrust in $H \rightarrow g g$

$$
\tau=1-\max _{\hat{t}} \frac{\sum_{i}\left|\hat{t} \cdot \vec{p}_{i}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}
$$

- Represents simplest possible example to highlight features of subleading power resummation.
- Extension to NLL, inclusion of quark operators, etc. interesting but won't be covered here.

LL Resummation for Thrust at NLP

- Power corrections arise from two distinct sources:
- Power corrections to scattering amplitudes.
- Power corrections to kinematics.
- Each represent RG independent classes of power corrections:

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\mathrm{LL}}^{(2)}}{\mathrm{d} \tau}=\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\text {kin }, \mathrm{LL}}^{(2)}}{\mathrm{d} \tau}+\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\text {hard }, \mathrm{LL}}^{(2)}}{\mathrm{d} \tau}
$$

- We will see that to LL, each class reduces to a mixing with θ function operators, equivalent to the 'illustrative' example shown above.
- This immediately implies exponentiation into a LL Sudakov for thrust at subleading power.

Matrix Element Corrections

- Matrix element corrections arise from operators involving an additional $\mathcal{B}_{n \perp}, \mathcal{B}_{u s}$ or $\partial_{u s}$.
- We have performed an explicit matching to the required operators

$$
\begin{aligned}
& \mathcal{O}_{\mathcal{P B} 1}^{(2)}=C_{\mathcal{P} \mathcal{B} 1}^{(2)} f^{a b c} \mathcal{B}_{n \perp, \omega_{1}}^{a} \cdot\left[\mathcal{P}_{\perp} \mathcal{B}_{\bar{n} \perp, \omega_{2}}^{b} \cdot\right] \mathcal{B}_{\bar{n} \perp, \omega_{3}}^{c} H \\
& \mathcal{O}_{\mathcal{P} B 2}^{(2)}=C_{\mathcal{P} \mathcal{B} 2}^{(2)} f^{a b c}\left[\mathcal{P}_{\perp} \cdot \mathcal{B}_{\bar{n} \perp, \omega_{3}}^{a}\right] \mathcal{B}_{n \perp, \omega_{1}}^{b} \cdot \mathcal{B}_{\perp \bar{n}, \omega_{2}}^{c} H
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{O}_{\partial \mathcal{B}(u s)(0)}^{(2)}=C_{n \cdot \partial}^{(2)} \mathcal{B}_{\perp n, \omega_{1}}^{\mu a} \text { in } \cdot \partial \mathcal{B}_{\perp \bar{n}, \omega_{2}}^{\mu b}\left(\mathcal{Y}_{\bar{n}}^{T} \mathcal{Y}_{n}\right)^{a b} H, \\
& \mathcal{O}_{\partial \mathcal{B}(u s)(\overline{0})}^{(2)}=C_{\bar{n} \cdot \partial}^{(2)} \mathcal{B}_{\perp \bar{n}, \omega_{2}}^{\mu a} i \bar{n} \cdot \partial \mathcal{B}_{\perp n, \omega_{1}}^{\mu b}\left(\mathcal{Y}_{\bar{n}}^{T} \mathcal{Y}_{n}\right)^{a b} H
\end{aligned}
$$

- Wilson coefficients of soft operators are fixed to all orders using RPI:

$$
C_{\mathcal{B}(u s(n))}^{(2)}=-\frac{\partial C^{(0)}}{\partial \omega_{1}}
$$

Factorization for Matrix Element Corrections

- By RG consistency, it is sufficient to consider the power suppressed soft function, involving a $\partial_{u s}$ or $\mathcal{B}_{u s}$

$$
\frac{1}{N_{c}} \operatorname{tr}\langle 0| \mathcal{Y}_{\bar{n}}^{T}(x) \mathcal{Y}_{n}(x) \bar{n} \cdot \mathcal{B}_{u s(n)}(x) \delta\left(\tau_{u s}-\hat{\tau}_{u s}\right) \mathcal{Y}_{n}^{T}(0) \mathcal{Y}_{\bar{n}}(0)|0\rangle=\int \frac{d^{4} r}{(2 \pi)^{4}} e^{-i r \cdot x} S_{n \mathcal{B}_{u s}}^{(2)}\left(\tau_{u s}, r\right)
$$

which appears in the factorization as

$$
\begin{aligned}
\frac{d \sigma_{\mathcal{B}}^{(2)}}{d \tau} & =H_{\bar{n} \cdot \mathcal{B}}\left(Q^{2}\right) \int d \tau_{n} d \tau_{\bar{n}} d \tau_{u s} \delta\left(\tau-\tau_{n}-\tau_{\bar{n}}-\tau_{u s}\right) \\
& \cdot\left[\int \frac{d^{4} r}{(2 \pi)^{4}} S_{n \mathcal{B}}^{(2)}\left(\tau_{u s}, r\right)\right] \cdot\left[\int \frac{d k^{-}}{2 \pi} \mathcal{J}_{\bar{n}}\left(\tau_{\bar{n}}, k^{-}\right)\right] \cdot\left[\int \frac{d I^{+}}{2 \pi} \mathcal{J}_{n}\left(\tau_{n}, I^{+}\right)\right]
\end{aligned}
$$

- These operators mix with a θ function soft function just as with the 'illustrative' example considered above. Resummation is identical.

$$
\mu \frac{d}{d \mu}\binom{S_{n \mathcal{B}_{u s}}(\tau, \mu)}{S_{g, \theta}(\tau, \mu)}=\int d \tau^{\prime}\left(\begin{array}{cc}
\gamma_{g, \delta}^{S}\left(\tau-\tau^{\prime}, \mu\right) & \gamma_{n \mathcal{B}_{u s} \rightarrow \theta} \delta\left(\tau-\tau^{\prime}\right) \\
0 & \gamma_{g, \delta}^{S}\left(\tau-\tau^{\prime}, \mu\right)
\end{array}\right)\binom{S_{n \mathcal{B}}\left(\tau^{\prime}, \mu\right)}{S_{g}, \theta\left(\tau^{\prime}, \mu\right)}
$$

Kinematic Corrections

- Kinematic corrections arise from
- Phase space
- Thrust observable definition (does not contribute at LL)
- Phase space corrections can be treated through choice of routing

- Are described by the 'illustrative' example considered above

LL Resummation for Thrust at NLP

- Complete result given by sum of two contributions.

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\mathrm{LL}}^{(2)}}{\mathrm{d} \tau}=\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\text {kin }, \mathrm{LL}}^{(2)}}{\mathrm{d} \tau}+\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\text {hard }, \mathrm{LL}}^{(2)}}{\mathrm{d} \tau}
$$

- Both have same Sudakov \Longrightarrow can be directly added.
- Obtain the LL resummed result for pure glue $H \rightarrow g g$ thrust

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\mathrm{LL}}^{(2)}}{\mathrm{d} \tau}=\left(\frac{\alpha_{s}}{4 \pi}\right) 8 C_{A} \log (\tau) e^{-\frac{\alpha_{s}}{4 \pi} \mathrm{c}_{\text {cusp }}^{g} \log ^{2}(\tau)}
$$

- Provides the first all orders resummation for an event shape at subleading power.
- Very simple result. Subleading power LL driven by cusp anomalous dimension!

Fixed Order Check

- We can explicitly check this result by fixed order calculation of the power corrections.
- RG consistency for $1 / \epsilon$ poles implies that the LL power correction can be computed only from hard-collinear contributions:

[Moult, Rothen, Stewart, Tackmann, Zhu]
- Expanding known results for $\mathrm{H} \rightarrow 3$ partons at NNLO, we can analytically compute the power corrections to $\mathcal{O}\left(\alpha_{s}^{3}\right)$:

$$
\frac{1}{\sigma_{0}^{H}} \frac{\mathrm{~d} \sigma^{H}}{\mathrm{~d} \tau}=\frac{\alpha_{s}}{4 \pi} 8 C_{A} \log \tau-\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} 32 C_{A}^{2} \log ^{3} \tau+\left(\frac{\alpha_{s}}{4 \pi}\right)^{3} 64 C_{A}^{3} \log ^{5} \tau+\mathcal{O}\left(\alpha_{s}^{4}\right)
$$

- Provides a highly non-trivial check on the correctness of our all orders resummation.

Conclusions

- SCET provides convenient organization of power expansion in terms of gauge invariants operators that can be separately renormalized.

- Achieved first all orders resummation at subleading power for an event shape observable.

Thanks!

