Jet Vetoes with a Jet Rapidity Cut.

Johannes Michel DESY Hamburg

In collaboration with Piotr Pietrulewicz & Frank Tackmann

XVth Annual Workshop on Soft-Collinear Effective Theory March 19, 2018

Introduction.

Motivation.

Jet binning & jet vetoes, $p_T^{\rm jet} < p_T^{\rm cut}, \ldots$

- Reduce backgrounds, increase sensitivity to production channels
- ... with a jet rapidity cut, $\eta_{
 m jet} < \eta_{
 m cut}$
 - Pile-up hinders jet reconstruction at forward rapidities and small $p_T^{
 m jet}$
 - ► Realistically the veto is loosened to $\tilde{p}_T^{\mathrm{cut}} > p_T^{\mathrm{cut}}$ for $\eta_{\mathrm{jet}} > \eta_{\mathrm{cut}}$

Question:Can we quantify the impact of η_{cut} , \tilde{p}_T^{cut} ?Can we systematically incorporate it into resummed predictions?

Jet Vetoes with a Jet Rapidity Cut.

No Veto Beyond the Rapidity Cut.

Standard jet veto resummation: $p_T^{ m cut} \gg Q e^{-\eta_{ m cut}}$.

• Standard jet veto resummation assumes $\eta_{\rm cut} = \infty$

[Banfi, Monni, Salam, Zanderighi '12] [Becher, Neubert, Rothen '12, '13] [Stewart, Tackmann, Walsh, Zuberi '12, '13]

Standard jet veto resummation: $p_T^{ m cut} \gg Q e^{-\eta_{ m cut}}$

• Standard jet veto resummation assumes $\eta_{cut} = \infty$

[Banfi, Monni, Salam, Zanderighi '12] [Becher, Neubert, Rothen '12, '13] [Stewart, Tackmann, Walsh, Zuberi '12, '13]

• Energetic emissions ($E\sim Q$) with $\eta\gtrsim\eta_{
m cut}$ have

 $p_T \sim E e^{-\eta} \lesssim Q e^{-\eta_{
m cut}}$

• New scale for finite $\eta_{\rm cut}$

Standard jet veto resummation: $p_T^{ m cut} \gg Q e^{-\eta_{ m cut}}$.

• Standard jet veto resummation assumes $\eta_{\rm cut} = \infty$

[Banfi, Monni, Salam, Zanderighi '12] [Becher, Neubert, Rothen '12, '13] [Stewart, Tackmann, Walsh, Zuberi '12, '13]

• Energetic emissions ($E\sim Q$) with $\eta\gtrsim\eta_{
m cut}$ have

 $p_T \sim E e^{-\eta} \lesssim Q e^{-\eta_{
m cut}}$

• New scale for finite $\eta_{\rm cut}$

$\eta_{ m cut}$ dependent beam functions: $p_T^{ m cut} \sim Q e^{-\eta_{ m cut}}$.

 $egin{aligned} &\sigma_0(p_T^{ ext{cut}}, \eta_{ ext{cut}}) \ &= H_\kappa(\Phi) \ & imes B_a(\omega_a, p_T^{ ext{cut}}, \eta_{ ext{cut}}, R) \ & imes B_b(\omega_b, p_T^{ ext{cut}}, \eta_{ ext{cut}}, R) \ & imes S_\kappa(p_T^{ ext{cut}}, R) \ & imes \left[1 + \mathcal{O}igg(rac{p_T^{ ext{cut}}}{O}, R^2, e^{-\eta_{ ext{cut}}}igg)
ight] \end{aligned}$

• Absorb the η_{cut} dependence into an additive correction:

 $\mathcal{I}_{ij}(\omega, p_T^{ ext{cut}}, \eta_{ ext{cut}}, R, \mu,
u) = \mathcal{I}_{ij}(\omega, p_T^{ ext{cut}}, R, \mu,
u) + \Delta \mathcal{I}_{ij}\Big(rac{\omega e^{-\eta_{ ext{cut}}}}{n_{ ext{cut}}^{ ext{cut}}}, R\Big)$

- Calculated all $\Delta \mathcal{I}_{ij}$ at $\mathcal{O}(\alpha_s)$, $\mathcal{O}(\alpha_s^2 \ln R)$
- Useful: factorizing the $\alpha_s^2 \ln R$ piece into

primary emission \otimes semi-inclusive jet function

[Kang, Ringer, Vitev '16]

$\eta_{ m cut}$ dependent beam functions: $p_T^{ m cut} \sim Q e^{-\eta_{ m cut}}$

$\eta_{ m cut}$ dependent beam functions: $p_T^{ m cut} \sim Q e^{-\eta_{ m cut}}$

Refactorization for tight vetoes: $p_T^{ m cut} \ll Q e^{-\eta_{ m cut}}$

[Hornig, Kang, Makris, Mehen '17 \rightarrow talk by Y. Makris]

- Calculated $B_i^{(\text{cut})}$, $S_i^{(\text{cut})}$ at $\mathcal{O}(\alpha_s)$ (agrees with Hornig et al.) and $\mathcal{O}(\alpha_s^2 \ln R)$
- Going beyond LL would require an all-order treatment of (NGLs) [Hatta, Ueda; Caron-Huot; Larkoski, Moult, Neill; Becher, Neubert, Rothen, Shao '13-'16]

Johannes Michel (DESY Hamburg)

Jet Vetoes with a Jet Rapidity Cut.

Refactorization for tight vetoes: $p_T^{ m cut} \ll Q e^{-\eta_{ m cut}}$

• Soft-collinear and collinear modes have the same angular resolution, but different energies:

 $p_T^{
m cut} e^{\eta_{
m cut}} \ll Q$

- Intrinsic nonglobal structure
- Analogous to a narrow jet with $m_J \sim p_T^T R$ and an outside veto [Kolodrubetz, Pietrulewicz, Stewart, Tackmann, Waalewijn '16: "Regime 3"]

Summary: no veto beyond the rapidity cut.

Standard setup receives corrections

• Can seamlessly* incorporate these into the beam function

*at the cost of a more involved measurement

- Refactorization for $p_T^{
 m cut} \ll Q e^{-\eta_{
 m cut}}$ mostly irrelevant for realistic vetoes
- Use these ingredients as building blocks for the step-like veto

Note: $p_T^{
m cut} \sim Q e^{-\eta_{
m cut}}$ is relevant for Higgs analyses, if $\eta_{
m cut} = 2.5$

- Our setup in this regime differs from the one of Hornig et al.
- Can describe this regime without having to think about NGLs

Step-like Jet Vetoes.

Collinear resolves the step: $p_T^{ m cut} \sim Q e^{-\eta_{ m cut}} \sim ilde{p}_T^{ m cut}$.

 $egin{aligned} &\sigma_0(p_T^{ ext{cut}}, ilde{p}_T^{ ext{cut}}, \eta_{ ext{cut}}) \ &= H_\kappa(\Phi) \ & imes B_a(\omega_a, p_T^{ ext{cut}}, ilde{p}_T^{ ext{cut}}, \eta_{ ext{cut}}, R) \ & imes B_b(\omega_b, p_T^{ ext{cut}}, ilde{p}_T^{ ext{cut}}, \eta_{ ext{cut}}, R) \ & imes S_\kappa(p_T^{ ext{cut}}, R) \ & imes \left[1 + \mathcal{O}\Big(rac{p_T^{ ext{cut}}}{Q}, rac{ ilde{p}_T^{ ext{cut}}}{Q}, R^2 \Big)
ight] \end{aligned}$

Direct extension of $\eta_{ ext{cut}}$ dependent beam functions (

• At $\mathcal{O}(\alpha_s)$ and $\mathcal{O}(\alpha_s^2 \ln R)$:

$$egin{aligned} \Delta \mathcal{I}_{ij}(\omega, p_T^{ ext{cut}}, ilde{p}_T^{ ext{cut}}, \eta_{ ext{cut}}, R) = &+ \Delta \mathcal{I}_{ij}(\omega, p_T^{ ext{cut}}, \eta_{ ext{cut}}, R) \ &- \Delta \mathcal{I}_{ij}(\omega, ilde{p}_T^{ ext{cut}}, \eta_{ ext{cut}}, R) \end{aligned}$$

(This measurement decomposition does not hold for the full two-loop piece.)

Collinear resolves the step: $p_T^{ m cut} \sim Q e^{-\eta_{ m cut}} \sim ilde{p}_T^{ m cut}$.

Refactorization for a tight central veto: $p_T^{ m cut} \ll ilde{p}_T^{ m cut}$.

 NGLs entangle collinear and soft-collinear contributions ► (NGLs) within soft-collinear sector

CSoft resolves the step: $p_T^{ m cut} \sim ilde{p}_T^{ m cut} \ll Q e^{-\eta_{ m cut}}$

Soft-collinear function $S_i(p_T^{\text{cut}}, \tilde{p}_T^{\text{cut}}, \eta_{\text{cut}}, R)$, computed to $\mathcal{O}(\alpha_s^2 \ln R)$

- $\nu_{\mathcal{S}} = \sqrt{p_T^{ ext{cut}} ilde{p}_T^{ ext{cut}} e^{+\eta_{ ext{cut}}}}$ resums all logs of $p_T^{ ext{cut}}/Q e^{-\eta_{ ext{cut}}}$ and $ilde{p}_T^{ ext{cut}}/Q e^{-\eta_{ ext{cut}}}$
- Full two-loop S_i could be obtained by numerical calculation with SoftSERVE [Bell, Rahn, Talbert → see talk by G. Bell on Wednesday]
- All other ingredients are already known to NNLL', regime is
- Can also infer presence of S_i from consistency:

$$1-2\gamma_{
u,B}=4\Gamma_{ ext{cusp}}\lnrac{ ilde{p}_{T}^{ ext{cut}}}{\mu}
eq4\Gamma_{ ext{cusp}}\lnrac{ extsf{p}_{T}^{ ext{cut}}}{\mu}=\gamma_{
u,S}$$

Johannes Michel (DESY Hamburg)

00

VGi

Comparing different treatments of the rapidity cut.

- NLL' (η_{cut}) + NLO (η_{cut}) use η_{cut} dependent beam functions (
- Same RG structure as for $\eta_{\rm cut} = \infty$ (
- Use known profile-scale setup to estimate resummation uncertainties* [Stewart, Tackmann, Walsh, Zuberi '13]
 - *Fixed-order results use ST uncertainties [Stewart, Tackmann '11]
- Total uncertainty estimate is $\Delta_{
 m tot}^2 = \Delta_{\mu}^2 (+\Delta_{arphi}^2) + \Delta_{
 m res}^2$

Comparing different treatments of the rapidity cut.

- NLL' (η_{cut}) +NLO (η_{cut}) use η_{cut} dependent beam functions (
- Same RG structure as for $\eta_{\rm cut} = \infty$ (
- Use known profile-scale setup to estimate resummation uncertainties* [Stewart, Tackmann, Walsh, Zuberi '13]
 - *Fixed-order results use ST uncertainties [Stewart, Tackmann '11]
- Total uncertainty estimate is $\Delta_{
 m tot}^2 = \Delta_{\mu}^2 (+\Delta_{arphi}^2) + \Delta_{
 m res}^2$

NLL' predictions for finite $\eta_{\rm cut}$: gluon fusion.

	$\sigma_0(p_T^{ ext{cut}},\eta_{ ext{cut}}) ext{ [pb]}, extbf{gg} o H ext{ (13 TeV)}, ext{ rEFT}, extsf{m}_H = extsf{125 GeV}$	
$\eta_{ ext{cut}}$	$p_T^{ m cut}=25{ m GeV}$	$p_T^{ m cut}=30{ m GeV}$
2.5	$25.9 {\pm} 3.7_{\mu} {\pm} 1.5_{arphi} {\pm} 5.0_{ m res} \left(24.7\% ight)$	$28.6 \pm 3.9_{\mu} \pm 1.6_{\varphi} \pm 4.5_{ m res} (21.5\%)$
4.5	$22.0{\pm}2.0_\mu{\pm}1.0_arphi{\pm}2.7_{ m res}~(16.0\%)$	$25.2 {\pm} 2.2_{\mu} {\pm} 1.2_{\varphi} {\pm} 2.7_{ m res} (14.6\%)$
∞	$21.8 {\pm} 1.8_{\mu} {\pm} 1.0_{arphi} {\pm} 2.6_{ m res} (15.4\%)$	$25.1 {\pm} 2.1_{\mu} {\pm} 1.1_{\varphi} {\pm} 2.6_{ m res} (14.2\%)$

NLL' predictions for finite $\eta_{\rm cut}$: gluon fusion.

	$ \sigma_0(p_T^{ ext{cut}},\eta_{ ext{cut}})/ C_X ^2 ext{ [pb]}, extbf{gg} o X ext{ (13 TeV)}, extsf{\Lambda} = m_X = 1 ext{ TeV}$	
$\eta_{ ext{cut}}$	$p_T^{ m cut}=50{ m GeV}$	$p_T^{ m cut}=100{ m GeV}$
2.5	$3.6 {\pm} 0.7_{\mu} {\pm} 0.2_{arphi} {\pm} 0.9_{ m res} (33.9\%)$	$5.5 {\pm} 0.8_{\mu} {\pm} 0.2_{arphi} {\pm} 1.2_{ m res} (26.8\%)$
4.5	$2.8 {\pm} 0.4_{\mu} {\pm} 0.1_{arphi} {\pm} 0.4_{ m res} (21.3\%)$	$4.7{\pm}0.5_{\mu}{\pm}0.1_{arphi}{\pm}0.7_{ m res}(19.0\%)$
∞	$2.7{\pm}0.4_{\mu}{\pm}0.1_{arphi}{\pm}0.4_{ m res}(20.7\%)$	$4.7{\pm}0.5_{\mu}{\pm}0.1_{arphi}{\pm}0.7_{ m res}(18.9\%)$

NLL' predictions for finite η_{cut} : Drell-Yan.

	$\left { m d} \sigma_0(p_T^{ m cut},\eta_{ m cut})/{ m d} Q ~[{ m pb}/{ m GeV}], ~pp ightarrow Z/\gamma^* ightarrow \ell^+\ell^-$ (13 TeV), $Q=r$	
$\eta_{ ext{cut}}$	$p_T^{ m cut}=20{ m GeV}$	$p_T^{ m cut}=25{ m GeV}$
2.5	$361 {\pm} 22_\mu {\pm} 22_{ m res} (8.6\%)$	$392{\pm}23_\mu{\pm}15_{ m res}~(6.9\%)$
4.5	$339{\pm}23_\mu{\pm}22_{ m res}(9.4\%)$	$375{\pm}25_{\mu}{\pm}16_{ m res}(7.9\%)$
∞	$339\!\pm\!23_\mu\!\pm\!22_{ m res}(9.5\%)$	$375{\pm}25_{\mu}{\pm}16_{ m res}~(7.9\%)$

Conclusion.

Conclusion.

Jet vetoes with a jet rapidity cut:

- Standard jet veto resummation is correct up to $\mathcal{O}\Big(rac{Qe^{-\eta_{ ext{cut}}}}{n^{ ext{cut}}}\Big)$
 - Now incorporated into the resummation, in a systematical way:
 - a sharp cut on identified jets at $\eta_{
 m cut}$
 - a step in the jet veto at $\eta_{
 m cut}$
- Experimentally relevant regimes are free of NGLs
- Improved description of real-life jet vetoes
- This analysis paves the way to precision predictions for experimentally clean jet-based observables

Conclusion.

Jet vetoes with a jet rapidity cut:

- Standard jet veto resummation is correct up to $\mathcal{O}\Big(rac{Qe^{-\eta_{ ext{cut}}}}{n^{ ext{cut}}}\Big)$
- Now incorporated into the resummation, in a systematical way:
 - a sharp cut on identified jets at $\eta_{
 m cut}$
 - a step in the jet veto at $\eta_{
 m cut}$
- Experimentally relevant regimes are free of NGLs
- Improved description of real-life jet vetoes
- This analysis paves the way to precision predictions for experimentally clean jet-based observables

Thank you for your attention!

Full QCD comparison: gg ightarrow H .

Full QCD comparison: gg ightarrow X .

Full QCD comparison: Drell-Yan at $Q=m_Z$.

Full QCD comparison: Drell-Yan at high masses.

Detailed regime comparison: gg ightarrow H .

Detailed regime comparison: gg ightarrow X .

Detailed regime comparison: Drell-Yan at $Q=m_Z$.

