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Motivation and overview

• Ideally: Precise and differential predictions 

• Precise prediction for the e+e-    → 2 jets cross section differential in two 
angularities ea and eb 

Ea and eb are jointly resummed to NNLL 

Matched to NLO fixed order 

Numerical study:  
Profile scales, uncertainties, comparison to Monte Carlo
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Event generators 
- Fully differential 
- No strict order counting 
- No resummation 

uncertainties

Precise theory calculations 
- Resummation of large logarithms  
- Matched to fixed-oder predictions 
- Uncertainty estimates 
- Typically limited to one observable
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Angularities
• Event shape angularities 

• Axis that is insensitive to recoil: winner-takes-all axis 

• Special cases are  

• Parameter a determines  
the weight of the angle 
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Berger, Kucs, Sterman (2003)
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Mode Scaling (�,+,?) Measurement
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SCET+ framework
• Three different regions: 

• Regime 1 and 3: SCET I 
Regime 1 governed by eb measurement 
Regime 3 governed by ea measurement 

• Regime 2: SCET + 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Regime 1 : e� ⇠ e↵

Regime 2 : e� � e↵ � e↵/��
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Bauer, Tackmann, Walsh, Zuberi (2011);   
Procura, Waalewijn, LZ (2014); Larkoski, Moult, Neill (2015) 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SCET+ framework
• Three different regions: 

• All regimes describe cross-section up 
to power corrections 

• Regime 2 resums most logs, but involves also two expansions 
5

Regime 1 : e� ⇠ e↵

Regime 2 : e� � e↵ � e↵/��

Regime 3 : e↵ ⇠ e↵/��

Re
gim

e 1

Re
gi

m
e 

3

Re
gim

e 2

Fix
ed

 or
de

r

Get large when  
approaching Regime 3

Get large when  
approaching Regime 1



Page     | Lisa Zeune | Joint resummation of two angularities at NNLL

Factorization theorems
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Regime 1: 
- Single differential jet functions 
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Factorization theorems
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- Double differential jet functions 
- Single differential soft function 
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Factorization theorems
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- Single differential jet functions 
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NNLL ingredients
• Fixed order ingredients @ 1-loop: 

• Non-cusp anomalous dimensions @ 2-loop: 
 
 
remaining ones by consistency
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Fixed-order Non-cusp Cusp and Beta

LL tree - 1-loop

NLL tree 1-loop 2-loop

NNLL 1-loop 2-loop 3-loop

J(e�)

J(e↵, e�)

S(e↵, e�)

S(e↵)

S (e↵, e�)

Hornig, Lee, Ovanesyan (2009)

Hornig, Lee, Ovanesyan (2009)

Larkoski, Moult, Neill (2014)

Larkoski, Moult, Neill (2014)

Kasemets, Waalewijn, LZ (2016)

Recalculated}

�H,1

�S,1 Bell, Rahn, Talbert (2016)

�H(↵s) + 2�J(↵s,↵) + �S(↵s,↵) = 0

�H(↵s) + 2�J(↵s,�) + 2�S (↵s,↵,�) + �S(↵s,↵) = 0

3-loop: Moch, Vermaseren, Vogt  (2005) 
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Consistency relations
• Integrating the double-differential jet and soft function yields single 

differential ones 

• Consistency between the factorization theorems 
 
 
 
 
and a similar relation between            ,         and 

• All relations checked at 1-loop
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• Combine cross sections to get a expression which is valid everywhere in 
phase space 

• E.g. in fixed-order region 
so  

• For a smooth transition: Profile scales

Matching of cross sections
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→ See also talk tomorrow from Gillian Lusterman
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1D results
• Profiles used for thrust generalised to  

angularities 

• Profile scale variations 

Fixed-order scale variations 

Variations of the transition parameters 

Resummation variations
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Gangal, Stahlhofen, Tackmann (2014); 
Mo, Tackmann, Waalewijn (2017);  

interpolates between the canonical region (e� < t1)

and the fixed-order region (e� > t3)
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2D results: NLO
• NLO, assume 
 
 
and use  

• Checked against  
EVENT2
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• NLO, assume 
 
 
and use  

• Checked against  
EVENT2 

• Phase-space boundaries at NLO

2D results: NLO
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2D results: nonsingular contribution

15

The plots are normalized to the  
full NLO cross section

⇥10�3 ⇥10�3
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2D profile scales
• Canonical scales in each region 

• Construct scales in terms of logarithms of angularities 

• Step 1: Polynomial that interpolates between the canonical scales 
between regions (one free parameter from transition point) 

• Step 2: Transition to the nonperturbative regime: Freeze as below 2 GeV 

• Step 3: Transition to fixed order 

Choose a square shape for FO region:  

Polynomial in t that interpolates between canonical scale across regions and 
(parameters t1 and t3 as in 1D case) 

16

log(µcan
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1 1/� log e� log e�
2 1/� log e� (1� �)/(↵� �) log e↵ + (↵� 1)/(↵� �) log e� log e↵
3 1/↵ log e↵ log e↵
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Differential vs cumulative scale setting
• Differential scale setting:            with u 

• Cumulative scale setting:             with u 

• Differentiating the latter gives  

• At NNLL differential scale setting does not capture all logarithms 

• Our scales undergo rapid changes in transition regions, leading to artifacts 
when using cumulant scale setting → We use differential scale setting 

• Work in progress: Include additional terms
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See e.g. Almeida, Ellis, Lee, Sterman, Sung (2014)  
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2D results
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• NLL switches of  
at NLO  
boundary due  
to profiles 

• Comparison to 
Pythia: 
 

Peak region 
outside the  
NLO  
phase-space

⇥10�3 ⇥10�3

⇥10�3 ⇥10�3

Normalized such 
that the cross 
section in each plot 
integrates to 1
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2D results

19

⇥10�3 ⇥10�3

⇥10�3 ⇥10�3

Normalized such 
that the cross 
section in each plot 
integrates to 1

• Comparison to 
Pythia: 
 

Peak region  
inside the NLO  
phase-space 

 

Pythia more 
similar to NNLL 
than NLL
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2D results

20
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Normalized such 
that the cross 
section in each plot 
integrates to 1

• Comparison to 
Pythia: 
 

Peak region  
inside the NLO  
phase-space 

 

Pythia more 
similar to NNLL 
than NLL
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Ratio plots
• Ratio observable r             is not IRC safe  

• Differential cross section can be calculated by marginalizing the resummed 
double differential cross section (“Sudakov safety”) 
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Conclusions
• We calculated the e+e-    → 2 jets cross section differential in two 

angularities ea and eb in SCET+ 

• We matched the cross section predictions from the different phase-space 
regions and constructed 2D profile scales for a smooth transition 

• Work in progress: 

Plan: NNLL+NLO 
At the moment only NLL’+NLO due to differential scale setting 

2D scale variations to estimate uncertainties 

Validation at as^2   by comparison to EVENT2

22

e+e� ! 2

e↵ e�

O(↵2
s)

Thank you!



Back up



Page     | Lisa Zeune | Joint resummation of two angularities at NNLL

Technical detail
• Double-differential soft and jet functions implemented as cumulant to 

avoid complicated plus distributions 

• Convolutions with cumulative distributions
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Larkoski, Moult, Neill: NLL conjecture  
• Boundary theories for the measurement of two angularities on a single jet 

were identified and factorization theorems derived  

• Interpolating function across the bulk region 
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EVENT2 results

• Preliminary results!
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2D profile scales
• Canonical scales in each region 

• Construct scales in terms of logarithms of angularities 

• Step 1: Polynomial that interpolates between the canonical scales 
between regions (one free parameter from transition point)
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2D profile scales
• Canonical scales in each region 

• Step 2: Transition to the nonperturbative regime: Freeze as below 2 GeV 

• Step 3: Transition to fixed order 

Choose a square shape for FO region: 

Polynomial h.           that interpolates between 1 for t<t1  and 0 for t>t3 

E.g. 
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