

Twist-2 transverse momentum dependent distributions at NNLO in QCD

SCET 2018, Amsterdam, March 19-22
Daniel Gutiérrez Reyes (UCM)(speaker)
Ignazio Scimemi (UCM)
Alexey A. Vladímirov (Regensburg U.)

Outline

* Introduction
* Factorization theorems with TMDs
* Small-b operator product expansion
* Transversity and Pretzelosity at NLO
* Transversity and Pretzelosity at NNLO
* Helicity at NLO
* Conclusions

Factorization theorems with TMDs Definition of Operators

IMD factorization theorems Consistent treatment of rapidity divergences in Spin (in)dependent TMDs

Self contained definition of TMD operators

Without referring to a scattering process

- Quark and gluon components of the generic TMDs

$$
\begin{gathered}
\Phi_{i j}(x, \boldsymbol{b})=\int \frac{d \lambda}{2 \pi} e^{-i x p^{+} \lambda} \bar{q}_{i}(\lambda n+\boldsymbol{b}) \mathcal{W}(\lambda, \boldsymbol{b}) q_{j}(0) \\
\Phi_{\mu \nu}(x, \boldsymbol{b})=\frac{1}{x p^{+}} \int \frac{d \lambda}{2 \pi} e^{-i x p^{+} \lambda} F_{+\mu}(\lambda n+\boldsymbol{b}) \mathcal{W}(\lambda, \boldsymbol{b}) F_{+\nu}(0)
\end{gathered}
$$

- The soft function renormalizes the rapidity divergences
R-factor
$S(\boldsymbol{b})=\frac{\operatorname{Tr}_{\text {color }}}{N_{c}}\langle 0|\left[S_{n}^{T \dagger} \tilde{S}_{\bar{n}}^{T}\right]$
(b) $\left[\tilde{S}_{\bar{n}}^{T \dagger} S_{n}^{T}\right]$
(0) $|0\rangle$
$=R_{\delta_{\text {-reg }}}=\frac{1}{\sqrt{S(\boldsymbol{b})}}$
$S(\boldsymbol{b})=\exp \left(A(\boldsymbol{b}, \epsilon) \ln \left(\delta^{+} \delta^{-}\right)+B(\boldsymbol{b}, \epsilon)\right)$

Factorization theorems with TMDs Drell-Van cross section

Small-b operator product expansion

Small-b OPE \Rightarrow Relation between TMD operators and lightcone operators

$$
\begin{aligned}
& \Phi_{i j}(x, \boldsymbol{b})=\left[\left(C_{q \leftarrow q}(\boldsymbol{b})\right)_{i j}^{a b} \otimes \phi_{a b}\right](x)+\left[\left(C_{q \leftarrow g}(\boldsymbol{b})\right)_{i j}^{\alpha \beta} \otimes \phi_{\alpha \beta}\right](x)+\ldots, \\
& \Phi_{\mu \nu}(x, \boldsymbol{b})=\left[\left(C_{g \leftarrow q}(\boldsymbol{b})\right)_{\mu \nu}^{a b} \otimes \phi_{a b}\right](x)+\left[\left(C_{g \leftarrow g}(\boldsymbol{b})\right)_{\mu \nu}^{\alpha \beta} \otimes \phi_{\alpha \beta}\right](x)+\ldots
\end{aligned}
$$

$$
\begin{gathered}
\text { Projectors over polarizations } \\
\Phi_{q}^{[\Gamma]}=\frac{\operatorname{Tr}(\Gamma \Phi)}{2} \quad \Phi_{g}^{[\Gamma]}=\Gamma^{\mu \nu} \Phi_{\mu \nu}
\end{gathered}
$$

Small-b OPE: Cancellation of rapidity divergences

- Small-b OPE for a generic TMD quark operator

$$
\Phi_{q}^{[\Gamma]}=\Gamma^{a b} \phi_{a b}+a_{s} C_{F} \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)[\cdots
$$

$$
\left.+\left(\frac{1}{(1-x)_{+}}-\ln \left(\frac{\delta}{p^{+}}\right)\right)\left(\gamma^{+} \gamma^{-} \Gamma+\Gamma \gamma^{-} \gamma^{+}+\frac{i \epsilon \gamma^{+} \not b \Gamma}{2 \boldsymbol{B}}+\frac{i \epsilon \Gamma b \gamma^{+}}{2 \boldsymbol{B}}\right)^{a b}+\ldots\right] \otimes \phi_{a b}+\mathcal{O}\left(a_{s}^{2}\right)
$$

- General R-factor

$$
R=1+2 a_{s} C_{F} \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)\left(\mathbf{L}_{\sqrt{\zeta}}+2 \ln \left(\frac{\delta}{p^{+}}\right)-\psi(-\epsilon)-\gamma_{E}\right)+\mathcal{O}\left(a_{s}^{2}\right)
$$

$$
\Gamma^{q}=\left\{\gamma^{+}, \gamma^{+} \gamma^{5}, \sigma^{+\mu}\right\}
$$

$$
\Gamma^{g}=\left\{g_{T}^{\mu \nu}, \epsilon_{T}^{\mu \nu}, b^{\mu} b^{\nu} / b^{2}\right\}
$$

Spin dependent TMD decomposition

Hadron matrix elements of TMD decomposed over all posible Lorentz variants Polarized TMDPDFs

Decomposition over Lorentz variants

$$
\Phi_{q \leftarrow h, i j}(x, \boldsymbol{b})=\langle h| \Phi_{i j}(x, \boldsymbol{b})|h\rangle=\frac{1}{2}\left(f_{1} \gamma_{i j}^{-}+g_{1 L} S_{L}\left(\gamma_{5} \gamma^{-}\right)_{i j}\right.
$$

$$
\left.\left(S_{T}^{\mu} \gamma_{5} \sigma^{+\mu}\right)_{i j} h_{1}+\left(i \gamma_{5} \sigma^{+\mu}\right)_{i j}\left(\frac{g_{T}^{\mu \nu}}{2}+\frac{b^{\mu} b^{\nu}}{b^{2}}\right) \frac{S_{T}^{\nu}}{2} h_{1 T}^{\perp}+\ldots\right)
$$

Unpolarized	LO	NLO	NNLO
Helicity			
Transversity			
Pretzelosity			
Linearly			
polarized gluons			

Unpolarized	LO	NLO	NNLO
Helicity			
Transversity			
Pretzelosity Linearly polarized gluons			

Transversity and Pretzelosity at NLO

Lorentz structure and matching

Usual spinor structure
$\Gamma=i \gamma_{5} \sigma^{+\mu}$
Scheme dependent

Not mixture with gloons at leading twist

Common spinor structure

$$
\Gamma=\sigma^{+\mu}
$$

Scheme independent!

Calculating $R \Phi$ and comparing with the general parameterization

$$
R \Phi_{q}^{\left[\sigma^{+\mu}\right]}=g_{T}^{\mu \nu} \delta C_{q \leftarrow q} \otimes \phi_{q}^{\left[\sigma^{+\nu}\right]}+\left(\frac{b^{\mu} b^{\nu}}{b^{2}}+\frac{g_{T}^{\mu \nu}}{2(1-\epsilon)}\right) \delta^{\perp} C_{q \leftarrow q} \otimes \phi_{q}^{\left[\sigma^{+\nu}\right]}
$$

Transversity-Transversity matching

Pretzelosity- Transversity matching

Matching coefficients up to NLO

10

$$
\begin{gathered}
C_{q \leftarrow q}^{F[0]}=F_{q \leftarrow q}^{[0]} \\
C_{q^{\prime}, \bar{q} \leftarrow q}^{F[0]}=0
\end{gathered}
$$

Analogous relations for gluon distributions and crossed channels...
NLO

$$
\begin{gathered}
C_{q \leftarrow q}^{F[1]}=F_{q \longleftarrow q}^{[1]}-f_{q \longleftarrow q}^{[1]} \\
C_{q^{\prime}, \bar{q} \longleftarrow q}^{F[1]}=0
\end{gathered}
$$

Renormalized TMDs up to NLO

$$
F^{r e n}=Z_{2}^{-1} Z_{F}\left(F^{b a r e} S^{-1 / 2}\right)
$$

10

$$
F^{r e n[0]}=F^{\text {bare }[0]}
$$

NLO

$$
F^{\text {bare }[1]}=\underbrace{F^{\text {bare }[1]}-\frac{S^{[1]} F^{\text {bare }[0]}}{2}}_{\text {rap.div.free }}+\left(Z_{F}^{[1]}-Z_{2}^{[1]}\right) F^{\text {bare }[0]}
$$

Diagrams contributing to TMDS at NLO

The calculation is
striaghtforward
to the unpolarized case
M.G.Echevarria et al.: 1604.07869

Matching coefficients up to NLO

Transversity - Transversity small-b expression

$$
h_{1}(x, \boldsymbol{b})=\left[\delta C_{q \leftarrow q}(\boldsymbol{b}) \otimes \delta f_{q}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)
$$

Agrees with A. Bacchetta, A.Prokudin 1303.2129!

NLO matching coefficient

$$
\delta C_{q \leftarrow q}=\delta(\bar{x})+a_{s} C_{F}\left(-2 \mathbf{L}_{\mu} \delta p_{q q}+\delta(\bar{x})\left(-\mathbf{L}_{\mu}^{2}+2 \mathbf{L}_{\mu} \mathbf{l}_{\zeta}-\zeta_{2}\right)\right)+\mathcal{O}\left(a_{s}^{2}\right)
$$

Pretzelosity - Transversity small-b expression

$h_{1 T}^{\perp}(x, \boldsymbol{b})=\left[\delta^{\perp} C_{q \leftarrow q}(\boldsymbol{b}) \otimes \delta f_{q}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)=\left[\left(0+\mathcal{O}\left(a_{s}^{2}\right)\right) \otimes \delta f_{q}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)$

NLO matching coefficient

$\delta^{\perp} C_{q \leftarrow q}=-4 a_{s} C_{F} \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon) \bar{x} \epsilon^{2}$

This observation is supported by the measurement of $\sin \left(3 \phi_{h}-\phi_{S}\right)$ asymmetries by HERMES and COMPASS! C.Lefky, A.Prokudin 1411.0580

JLAB
C.Lefky, A.Prokudin 1411.0580

> Transversity and Pretzelosity at NNLO

Transversity distribution

Virtual-Real diagrams

Corrections

(A)

Self energy

Self energy $\sigma^{+\mu}$
(1)
Polle $1 / \epsilon^{3}$

Should be cancelled with vertex correction term in RR diagrams
No crossed RD

Pole $1 / \epsilon^{3}$

Should be cancelled with single WL term in RR diagrams
No crossed RD
These diagrams are exactly zero!

Quark self-energy
 Gluon self-energy (TrNf)

Real-Real diagrams

[^0]
Renormalization of TMD at NNLO Cancellation of rapidity divergences

$q \leftarrow q$

$$
\delta \Phi^{[0]}=0
$$

$$
\delta \Phi^{[1]}=0
$$

This channel does not appear

$$
h_{1}^{[2]}=\delta \Phi^{[2]}
$$

No RD here!

Matching coefficients

PDFs at 2-loops: Written in terms of 2-loop splitting functions Stratmann, Vogelsang. ArXiv: 0108241

$$
\begin{gathered}
\delta f_{q \leftarrow q}^{[2]}=\frac{1}{2 \epsilon^{2}}\left(\delta P_{q \leftarrow q}^{[1]} \otimes \delta P_{q \leftarrow q}^{[1]}+\frac{\beta_{0}}{2} \delta P_{q \leftarrow q}^{[1]}\right)-\frac{1}{2 \epsilon} \delta P_{q \leftarrow q}^{[2]} \\
\delta f_{\bar{q} \leftarrow q}^{[2]}=-\frac{1}{2 \epsilon} \delta P_{\bar{q} \leftarrow q}^{[2]}
\end{gathered}
$$

Results

$$
\begin{gathered}
\delta C_{q \leftarrow q}^{[2]}(x, \boldsymbol{b}, \mu, \zeta)=\sum_{k, m} \sum_{\mathcal{C}} \mathcal{C} \delta C_{\mathcal{C}, q \leftarrow q}^{(2 ; k, m)}(x) \mathbf{L}_{\mu}^{k} \mathbf{1}_{\zeta}^{m} \\
\delta C_{C_{F} T_{N} T_{f}, q-q}^{(2,0,0)}(x)=-\frac{4}{3} p_{+}(x)\left(1-\frac{74}{9} x+x^{2}-\frac{10}{3} x \ln x-x \ln ^{2} x\right)+\delta(\bar{x})\left(-\frac{328}{81}+\frac{5 \pi^{2}}{9}+\frac{28}{9} \zeta(3)\right) \\
\text { Plus part+delta part } \\
p_{+}(x)=\frac{1}{(1-x)_{+}}
\end{gathered}
$$

Finite

$$
\begin{gathered}
\text { Finite } \delta C_{\bar{q} \leftarrow q}^{[2]}(x, \boldsymbol{b}, \boldsymbol{\mu})=\sum_{k} \delta C_{\bar{q} \leftarrow q}^{(2 ; k)}(x) \mathbf{L}_{\mu}^{k} \quad p(-x)=\frac{1}{1+x} \\
\delta C_{\bar{q} \leftarrow q}^{(2 ; 1)}(x, b, \mu)=-8 C_{F}\left(C_{F}-\frac{C_{A}}{2}\right) p(-x)\left(-1+\frac{2 \pi^{2}}{3} x+x^{2}-2 x \ln ^{2} x+8 x \ln x \ln (1+x)+8 x \operatorname{Li}_{2}(-x)\right)
\end{gathered}
$$

$$
\delta C_{q^{\prime} \leftarrow q}^{[2]}(x, \boldsymbol{b}, \mu)=0
$$

Pretzelosity distribution

Reduction of the number of diagrams

Diagrams with a non-interacting quark are exactly zero

$$
\sigma^{+\mu}\left(\frac{\boldsymbol{b}^{\mu} \boldsymbol{b}^{\nu}}{\boldsymbol{b}^{2}}-\frac{g_{T}^{\mu \nu}}{2(1-\epsilon)}\right) \sigma^{-\nu}=0
$$

As in the transversity case \rightarrow 0dd number of gamma matrices in each trace in $q^{\prime} \leftarrow q \longrightarrow 1+$ is zero!
At NNLO we have the same two cases that in transversity

> 1-loop result is ϵ-suppressed
> Two loop diagrams are less divergent than in another TMDs All the diagrams have no poles in ϵ

Non-zero Virtual-Real diagrams

Vertex

Corrections

Self energy

(D)

Self energy $\sigma^{+\mu}$

 | All the X2 diagrams are zero!
I
I $\sigma^{-\nu}$
L.H.S.
R.H.S.

Cancellation of Rapidity Divergences

Expression for renormalized TMD

$$
\begin{gathered}
h_{1}^{[2]} \frac{\delta \Phi^{[2]}-\frac{S^{[1]} \delta \Phi^{[1]}}{2}}{2}-\frac{S^{22} \delta \Phi^{[0]}}{2}+\frac{3 S}{8}+\left(Z_{q}^{[1]}-Z_{2}^{[1]}\right)\left(\delta \Phi^{[1]}-\frac{S^{[1]} \delta \Phi^{[1]}}{2}\right) \\
+\left(Z_{q}^{[2]}-Z_{2}^{[2]}-Z_{2}^{[1]} Z_{q}^{[1]}-Z_{2}^{[1]} Z_{2}^{[1]}\right) \delta \Phi^{[0]}
\end{gathered}
$$

We have different combinations of diagrams and SF to cancel RDs depending on their color factors

Results

First two diagrams are finite Third is zero
Sum of the diagrams is exactly zero!

$$
\delta^{\perp} C_{q^{\prime} \leftarrow q}^{[2]}=0
$$

Zero from the beginning Odd number of gamma matrices

$$
\begin{aligned}
& 94-9) \text { CFpart of the coefficient determined and different from zero! } \\
& \text { First term have an enhanced behavior at small-x! } \\
& \delta^{\perp} C_{C_{F}^{2}, q \leftarrow q}^{[2]}=\frac{4 \bar{x}}{x}\left(\bar{x}^{2}+3 \bar{x}-5\right)-16 \bar{x} \ln \bar{x}-16 x \ln x
\end{aligned}
$$

Helicity distribution

Schemes for γ^{5} in DR. Small-b OPE

Lorentz structures

$$
\Gamma=\gamma^{+} \gamma^{5} \quad \Gamma^{\mu \nu}=i \epsilon_{T}^{\mu \nu}
$$

Larin scheme is more convenient than HVBM because it does not violate Lorentz invariance, but it violates the definition of the leading dynamical twist

$$
\gamma^{+} \Gamma=\gamma^{+}\left(\gamma^{+} \gamma^{5}\right)_{\text {Larin }}=\frac{i}{3!} \epsilon^{+\nu \alpha \beta} \gamma^{+} \gamma_{\nu} \gamma_{\alpha} \gamma_{\beta} \neq 0
$$

Light modification of Larin scheme \Rightarrow Larin +

$$
\left(\gamma^{+} \gamma^{5}\right)_{\text {Larin }}=\frac{i \epsilon^{+-\alpha \beta}}{2!} \gamma^{+} \gamma_{\alpha} \gamma_{\beta}=\frac{i \epsilon_{T}^{\alpha \beta}}{2!} \gamma^{+} \gamma_{\alpha} \gamma_{\beta}
$$

Helicity TMD distribution in the regime of small-b

$$
\begin{aligned}
& g_{1 L}(x, \boldsymbol{b})=\left[\Delta C_{q \leftarrow q}(\boldsymbol{b}) \otimes \Delta f_{q}\right](x)+\left[\Delta C_{q \leftarrow g}(\boldsymbol{b}) \otimes \Delta f_{g}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right) \\
& g_{1 L}^{g}(x, \boldsymbol{b})=\left[\Delta C_{g \leftarrow q}(\boldsymbol{b}) \otimes \Delta f_{q}\right](x)+\left[\Delta C_{g \leftarrow g}(\boldsymbol{b}) \otimes \Delta f_{g}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)
\end{aligned}
$$

Diagrams contributing to TMDS at NLO

$R^{\text {Rapidity divergences: }}$
Renormalizergences:

The calculation is
striaghtforward
to the unpolarized case
M.G.Echevarria et al.: 1604.07869

Matching coefficients: scheme dependence

$$
\begin{gathered}
\Delta C_{q \leftarrow q}=\delta(\bar{x})+a_{s} C_{F}\left\{2 \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)\left[\frac{2}{(1-x)_{+}}-2+\bar{x}(1+\epsilon) \mathcal{H}_{\text {sch. }}+\delta(\bar{x})\left(\mathbf{L}_{\sqrt{\zeta}}-\psi(-\epsilon)-\gamma_{E}\right)\right]\right\}_{\epsilon \text {-finite }} \\
\Delta C_{q \leftarrow g}=a_{s} C_{F}\left\{2 \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)\left[x-\bar{x} \mathcal{H}_{\text {sch. }}\right]\right\}_{\epsilon \text {-finite }} \\
\Delta C_{g \leftarrow q}=a_{s} C_{F}\left\{2 \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)\left[1+\bar{x} \mathcal{H}_{\text {sch. }}\right]\right\}_{\epsilon \text {-finite }} \\
\Delta C_{g \leftarrow g}=\delta(\bar{x})+a_{s} C_{A}\left\{2 B^{\epsilon} \Gamma(-\epsilon) \frac{1}{x}\left[\frac{2}{(1-x)_{+}}-2-2 x^{2}+2 x \bar{x} \mathcal{H}_{\text {sch. }}+\delta(\bar{x})\left(\mathbf{L}_{\sqrt{\zeta}}-\psi(-\epsilon)-\gamma_{E}\right)\right]\right\}_{\epsilon \text {-finite }}
\end{gathered}
$$

$$
\mathcal{H}_{\text {sch. }}= \begin{cases}1+2 \epsilon & \text { HVBM } \\ \frac{1+\epsilon}{1-\epsilon} & \text { Larin }^{+}\end{cases}
$$

At NLO there is not scheme dependence!

Conclusions

* The evaluation of the OPE for a general operator restricts the Lorentz structures obtaining Leading dynamical twist TMDs
* We have a complete set of NLO TMD matching coefficients. Complete ϵ-dependent expressions allow us to do calculations at NNLO.
* Transversity has a matching coefficient calculated in an analogous way of the unpolarized function.
* Rapidity divergences cancelled (Polarized Factorization theorems at NNLO)
* Z's do not depend on the polarization.
* Pretzelosity has a matching coefficient that
* Is ϵ-suppressed at NLO, explaining phenomenological analysis
* Non-zero at NNLO (preliminar result). It has an enhanced behavior at small-x

Thanks!!!

δ-regularization

$$
\begin{aligned}
& W_{n}=P \exp \left(-i g \int_{0}^{\infty} d \sigma(n \cdot A)(n \sigma)\right) \rightarrow P \exp \left(-i g \int_{0}^{\infty} d \sigma(n \cdot A)(n \sigma) e^{-\delta \sigma x}\right) \\
& S_{n}=P \exp \left(-i g \int_{0}^{\infty} d \sigma(n \cdot A)(n \sigma)\right) \rightarrow P \exp \left(-i g \int_{0}^{\infty} d \sigma(n \cdot A)(n \sigma) e^{-\delta \sigma}\right)
\end{aligned}
$$

At diagram level \rightarrow Eikonal propagators

$$
\frac{1}{\left(k_{1}^{+}+i 0\right)\left(k_{1}^{+}+k_{2}^{+}+i 0\right) \ldots\left(k_{1}^{+}+\ldots+k_{n}^{+}+i 0\right)} \rightarrow \frac{1}{\left(k_{1}^{+}+i \delta\right)\left(k_{1}^{+}+k_{2}^{+}+2 i \delta\right) \ldots\left(k_{1}^{+}+\ldots+k_{n}^{+}+n i \delta\right)}
$$

This regularization makes zero-bin equal to soft factor
R-factor is scheme dependent!

$$
R=\frac{\sqrt{S(\boldsymbol{b})}}{\text { zero-bin }} \xrightarrow{\delta-\text { reg. }} R_{\delta-\text { reg. }}=\frac{1}{\sqrt{S(\boldsymbol{b})}}
$$

Non-abelian exponentiation satisfied at all orders!
δ-regularization violates gauge properties of WL by power suppressed in δ terms Only calculation at $\delta \rightarrow 0$ is legitimate!

Pretzelosity distribution

Cuadrupole modulation of parton density in the distribution of transversely polarized quarks in a transversely polarized nucleon

$$
\frac{d \sigma}{d x d y d \phi_{S} d P_{h T}}=\frac{\alpha^{2} 2 P_{h T}}{x y Q^{2}}\left\{\left(1-y+\frac{1}{2} y^{2}\right)\left(F_{U U, T}+\varepsilon F_{U U, L}\right)+S_{T}(1-y) \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\ldots\right\}
$$

Helicity matching coefficients: NLO results

$\mathrm{At}_{\epsilon} \rightarrow 0$ we have the NLO coefficients

$$
\begin{gathered}
\Delta C_{q \leftarrow q} \equiv C_{q \leftarrow q}=\delta(\bar{x})+a_{s} C_{F}\left(-2 \mathbf{L}_{\mu} \Delta p_{q q}+2 \bar{x}+\delta(\bar{x})\left(-\mathbf{L}_{\mu}^{2}+2 \mathbf{L}_{\mu} \mathbf{l}_{\zeta}-\zeta_{2}\right)\right)+\mathcal{O}\left(a_{s}^{2}\right) \\
\Delta C_{q \leftarrow g}=a_{s} T_{F}\left(-2 \mathbf{L}_{\mu} \Delta p_{q g}+4 \bar{x}\right)+\mathcal{O}\left(a_{s}^{2}\right) \\
\Delta C_{g \leftarrow q}=a_{s} C_{F}\left(-2 \mathbf{L}_{\mu} \Delta p_{g q}-4 \bar{x}\right)+\mathcal{O}\left(a_{s}^{2}\right) \\
\Delta C_{g \leftarrow g}=\delta(\bar{x})+a_{s} C_{A}\left(-2 \mathbf{L}_{\mu} \Delta p_{g g}-8 \bar{x}+\delta(\bar{x})\left(-\mathbf{L}_{\mu}^{2}+2 \mathbf{L}_{\mu} \mathbf{l}_{\zeta}-\zeta_{2}\right)\right)+\mathcal{O}\left(a_{s}^{2}\right)
\end{gathered}
$$

These results agree with the obtained in M.G.Echevarría et al. 1502.05354 A.Bacchetta A.Prokudin 1303.21 29!!

Drawback of schemes. $Z_{q q}^{5}$ renormalization constant

Drawback of both schemes \Rightarrow Violation of Adler-Bardeen theorem \Rightarrow Non renormalization of the axial anomaly

Fixed by an extra renormalization constant, $Z_{q q}^{5} \Rightarrow$ Derived from a external condition

S.A. Larin 9302240 , Y.Matiovine et al 076002 , VRavindran et al. 0311304

Only affect to the quark-to-quark part

- At large q_{T} TMD factorization reproduces collinear factorization \Rightarrow It is natural to normalize Helicity distribution \Rightarrow It reproduces polarized $D Y$ which is normalized to unpolarized $D Y$
- Equivalent in $\mathrm{TMDs} \Rightarrow$ Equality in polarized and unpolarized coefficients

$$
\left[Z_{q q}^{5}(\boldsymbol{b}) \otimes \Delta C_{q \leftarrow q}(\boldsymbol{b})\right](x)=C_{q \leftarrow q}(x, \boldsymbol{b})
$$

$$
Z_{q q}^{5}=\delta(\bar{x})+2 a_{s} C_{F} \boldsymbol{B}^{\epsilon} \Gamma(-\epsilon)\left(1-\epsilon-(1+\epsilon) \mathcal{H}_{\text {sch. }}\right) \bar{x}
$$

Linearly polarized gluons matching coefficients

Small-b expression for the linearly polarized gloon TMDPDF

$$
h_{1}^{\perp g}(x, \boldsymbol{b})=\left[\delta^{L} C_{g \leftarrow q}(\boldsymbol{b}) \otimes f_{q}\right](x)+\left[\delta^{L} C_{g \leftarrow g}(\boldsymbol{b}) \otimes f_{g}\right](x)+\mathcal{O}\left(\boldsymbol{b}^{2}\right)
$$

NLO matching coefficients

$$
\delta^{L} C_{g \leftarrow g}=-4 a_{s} C_{A} \frac{\bar{x}}{x}+\mathcal{O}\left(a_{s}^{2}\right) \quad \delta^{L} C_{g \leftarrow q}=-4 a_{s} C_{F} \frac{\bar{x}}{x}+\mathcal{O}\left(a_{s}^{2}\right)
$$

[^0]: Finite result, without plus-distribted terms and deltas

