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Step-like Jet Vetoes

CSoft resolves the step: pcut
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• Full two-loop Si could be obtained by numerical calculation with SoftSERVE
[Bell, Rahn, Talbert ! see talk by G. Bell on Wednesday]

• All other ingredients are already known to NNLL0, regime is
• Can also infer presence of Si from consistency:
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A brief review
• Non-global observables: soft radiations resolve the colors and directions 

of individual energetic partons. 

~n

•  Banfi-Marchesini-Smye equation

• Dasgupta-Salam angular dipole shower
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Figure 14. The action of the operator Vm on an amplitude in the large-Nc limit.

suppressed at large Nc. At large Nc, emissions arise only between nearest-neighbour legs,

since all other attachments would lead to non-planar contributions which are suppressed.

Based on the above simplification, the effect of Rm in the large-Nc limit is shown diagram-

matically in Figure 13. The action of Vm simplifies analogously, as shown in Figure 14.

The large-Nc color factor from squaring the amplitudes is simply a factor of Nc for each

color loop, and the number of additional color loops is equal to the number of powers of

αs, so that the color factor is obtained by switching to the ’t Hooft coupling λ = Nc αs.

We now plug the explicit results (5.11) for the anomalous-dimension coefficients Vm

and Rm into the expressions (5.17). For the coefficients of the expansion in t, we then

obtain
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where
∫
Ω 3Out =

∫ dΩ(n3)
4π Θnn̄

out(n3), and we have used the abbreviation

P kl
ij = W k

ij

(
W l

ik +W l
kj

)
. (5.21)

The above expressions include all leading logarithms, i.e. the global and non-global loga-

rithmic terms appear together.

Let us now relate the above expressions to the leading logarithmic resummation of

NGLs at large Nc, which can be obtained by solving the BMS equation [26]

∂L̂Gkl(L̂) =

∫
dΩ(nj)

4π
W j

kl

[
Θnn̄

in (j)Gkj(L̂)Gjl(L̂)−Gkl(L̂)
]
, (5.22)

with boundary condition Gkl(0) = 1. The function Gkl(L̂) depends on two light-like refer-

ence vectors nk and nl. After solving the equation, the resummed soft function is obtained

as S({n}, Qβ, µ) = G12(L̂) with L̂ = 4Nc t. While the non-linear integral equation (5.22)

– 43 –

(Dasgupta & Salam 2001)

(Banfi, Marchesini & Smye 2002)

M. Dasgupta, G.P. Salam / Physics Letters B 512 (2001) 323–330 327

Fig. 2. Left: the kind of diagram which must be considered in the calculation of S . Right: the same diagram represented in the large-NC limit,
with gluons shown as pairs of colour lines and quarks as single colour lines.

have a large relative error, which would translate to a
large absolute error on S because of the division by
the small quantity

√
∆ab(L).

Instead a more efficient procedure involves moving
the division by

√
∆ab(L) directly into the calculation

of the PC . This can be achieved using a modified
radiation intensity, F̃C (for both the emissions and the
virtual corrections),

(16)F̃C(θ,φ) = FC(θ,φ) −Fab(θ,φ)Θ(θ),

where one subtracts out the radiation intensity Fab

which would have been produced by the original qq̄

pair (in the large-NC limit). One calculates quantities
P̃C using analogs of Eqs. (12) and (13) with FC
replaced by F̃C and then S is simply given by

(17)S(αsL) =
∑

C|HR empty

P̃C(L).

It should be kept in mind that since F̃C is negative in
certain regions of phase space one loses a strict proba-
bilistic interpretation for the P̃C . Nevertheless the sum
over configurations is well-defined and meaningful.
The exact details of the Monte Carlo algorithm are

given in Appendix A. Here we restrict ourselves to
giving a parameterisation for S obtained by fitting to
the Monte Carlo results:

(18)S(αsL) ≃ exp
(

−CF CA
π2

3

(
1+ (at)2

1+ (bt)c

)
t2

)
,

with

t (αsL) = 1
2π

1∫

e−L

dx

x
αs (xQ)

(19)= 1
4πβ0

ln
1

1−2β0αsL
,

where β0 = (11CA −2nf )/(12π) and

(20)a = 0.85CA, b = 0.86CA, c = 1.33.

The parameterisation should be accurate to the order
of a few percent (better in most of the region) for
t < 0.7, corresponding to 1−2αsβ0L ! 0.005. 3
Actually, for the purposes of the fit one replaces

CF CA in (18) with C2A/2 since the Monte Carlo works
in the large-NC limit. But for use in phenomenology
one wishes to have the exact colour structure at least
at O(α2s ), hence the use of CF CA in (18).

4. Checks and conclusions

It is useful to check our results against fixed order
results from the next-to-leading order Monte Carlo
program Event2 [10]. First it is necessary to determine
the constant terms C

(q)
1 and C

(g)
1 , which are obtained

by requiring consistency between (4) and a full O(αs )
calculation. It is straightforward to show that they are
given by

(21)C
(q)
1 = 1

2
(
Cτ
1 − r3

)
, C

(g)
1 = r3

2
,

3 The accessible range of t is limited by two issues: firstly
only a small fraction of events are generated at large t , requiring
considerable statistics in order to investigate that region; and
secondly because an accurate determination of S at large t requires
a very small angular cutoff, which leads to there being many dipoles
in an event, and a consequent slowing down of the evolution.
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suppressed at large Nc. At large Nc, emissions arise only between nearest-neighbour legs,

since all other attachments would lead to non-planar contributions which are suppressed.

Based on the above simplification, the effect of Rm in the large-Nc limit is shown diagram-

matically in Figure 13. The action of Vm simplifies analogously, as shown in Figure 14.
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αs, so that the color factor is obtained by switching to the ’t Hooft coupling λ = Nc αs.
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The above expressions include all leading logarithms, i.e. the global and non-global loga-

rithmic terms appear together.

Let us now relate the above expressions to the leading logarithmic resummation of

NGLs at large Nc, which can be obtained by solving the BMS equation [26]
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with boundary condition Gkl(0) = 1. The function Gkl(L̂) depends on two light-like refer-

ence vectors nk and nl. After solving the equation, the resummed soft function is obtained

as S({n}, Qβ, µ) = G12(L̂) with L̂ = 4Nc t. While the non-linear integral equation (5.22)
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have a large relative error, which would translate to a
large absolute error on S because of the division by
the small quantity

√
∆ab(L).

Instead a more efficient procedure involves moving
the division by

√
∆ab(L) directly into the calculation

of the PC . This can be achieved using a modified
radiation intensity, F̃C (for both the emissions and the
virtual corrections),

(16)F̃C(θ,φ) = FC(θ,φ) −Fab(θ,φ)Θ(θ),

where one subtracts out the radiation intensity Fab

which would have been produced by the original qq̄

pair (in the large-NC limit). One calculates quantities
P̃C using analogs of Eqs. (12) and (13) with FC
replaced by F̃C and then S is simply given by

(17)S(αsL) =
∑

C|HR empty

P̃C(L).

It should be kept in mind that since F̃C is negative in
certain regions of phase space one loses a strict proba-
bilistic interpretation for the P̃C . Nevertheless the sum
over configurations is well-defined and meaningful.
The exact details of the Monte Carlo algorithm are

given in Appendix A. Here we restrict ourselves to
giving a parameterisation for S obtained by fitting to
the Monte Carlo results:

(18)S(αsL) ≃ exp
(

−CF CA
π2

3
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1+ (at)2

1+ (bt)c

)
t2

)
,

with

t (αsL) = 1
2π
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x
αs (xQ)

(19)= 1
4πβ0

ln
1

1−2β0αsL
,

where β0 = (11CA −2nf )/(12π) and

(20)a = 0.85CA, b = 0.86CA, c = 1.33.

The parameterisation should be accurate to the order
of a few percent (better in most of the region) for
t < 0.7, corresponding to 1−2αsβ0L ! 0.005. 3
Actually, for the purposes of the fit one replaces

CF CA in (18) with C2A/2 since the Monte Carlo works
in the large-NC limit. But for use in phenomenology
one wishes to have the exact colour structure at least
at O(α2s ), hence the use of CF CA in (18).

4. Checks and conclusions

It is useful to check our results against fixed order
results from the next-to-leading order Monte Carlo
program Event2 [10]. First it is necessary to determine
the constant terms C

(q)
1 and C

(g)
1 , which are obtained

by requiring consistency between (4) and a full O(αs )
calculation. It is straightforward to show that they are
given by

(21)C
(q)
1 = 1

2
(
Cτ
1 − r3

)
, C

(g)
1 = r3

2
,

3 The accessible range of t is limited by two issues: firstly
only a small fraction of events are generated at large t , requiring
considerable statistics in order to investigate that region; and
secondly because an accurate determination of S at large t requires
a very small angular cutoff, which leads to there being many dipoles
in an event, and a consequent slowing down of the evolution.
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3 The accessible range of t is limited by two issues: firstly
only a small fraction of events are generated at large t , requiring
considerable statistics in order to investigate that region; and
secondly because an accurate determination of S at large t requires
a very small angular cutoff, which leads to there being many dipoles
in an event, and a consequent slowing down of the evolution.

X

i

Qi
pi · ✏(k)
pi · k

⇠ Qtot
n · ✏
n · k
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Some recent progress

• Color density matrix Caron-Huot ’15

• Dressed gluon expansion Larkoski, Moult & Neill ’15 ’16

• Multi-Wilson-line structure in SCET Becher, Neubert, Rothen & DYS ’15 ’16

• For a wide-angle jet, the energetic particles are not collinear.

• For a narrow-angle jets, small-angle soft radiation plays an 
important role. Resolves directions of individual energetic partons!

• Collinear logs improved BMS eq Hatta, Iancu, Mueller, & Triantafyllopoulos ’17 

• Soft (Glauber) gluon evolution at amplitude level, finite Nc Martínez, 

Angelis, Forshaw, Plätzer & Seymour ’18

• Reduced density matrix Neill & Vaidya ‘18
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Factorization

• The operator for the emission from an amplitude with m hard 
partons 

Mm

soft Wilson lines along the directions of the 
energetic particles (color matrices)

hard scattering amplitude with m particles 
(vector in color space)

J
H
E
P
1
1
(
2
0
1
6
)
0
1
9

n⃗

α
δ = tan(α/2)

2Eout < βQ

Figure 1. Definition of the parameters δ and β of the dijet cross section. We use the thrust axis
n⃗ as the jet axis.

Weinberg [42]. Using the thrust vector as the jet axis leads to a simpler form of the

phase-space constraints and enables us to use existing two-loop results for the cone-jet soft

function obtained in [32, 33].

2.1 Wide-angle jets

Let us first consider wide-angle jets with δ ∼ 1. In this case the effective theory contains

only two relevant momentum regions, whose components (n · p, n̄ · p, p⊥) scale as follows:

hard: ph ∼ Q (1, 1, 1) ,

soft: ps ∼ Qβ (1, 1, 1) .
(2.3)

The hard mode describes the energetic particles inside the jet. Since we are dealing with

wide jets, the energetic radiation inside the jet covers a large angular range. It is thus not

collinear to n⃗ but has a homogenous scaling of all components. Given their large energy,

these particles can never go outside the jet, in contrast to the soft partons which can be

emitted inside or outside. Since there are no collinear singularities for large cone size, the

cross section is single-logarithmic, i.e. the leading logarithms have the form αn
s ln

nβ.

The factorization of an amplitude with m hard partons and an arbitrary number of soft

partons is of course well known. Each hard parton gets dressed with a Wilson line along

its direction. For an outgoing particle in the color representation Ti propagating along the

direction ni, the appropriate Wilson line is given by the path-ordered exponential

Si(ni) = P exp

(
igs

∫ ∞

0
ds ni ·Aa

s(sni)T
a
i

)
. (2.4)

The Wilson line Si is a matrix in color space, which acts on the color index of particle i.

The operator for the emission from an amplitude with m hard partons then takes the form

S1(n1)S2(n2) . . . Sm(nm) |Mm({p})⟩ , (2.5)

where nµ
i = pµi /Ei, and we use the compact notation {p} ≡ {p1, p2, . . . , pm}. This equation

is analogous to the factorization for amplitudes with coft particles [38], but while the coft

case involves splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})⟩.
In writing (2.5) we use the color-space formalism of [43, 44], in which amplitudes are treated

as n-dimensional vectors in color space. Since they act on different particles, the different

generators trivially commute [T a
i ,T

b
j ] = 0 for i ≠ j. The same is therefore true for the
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5

Factorization and resummation for jet cross section

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates

an integral over these directions and h. . . i denotes the color trace, which is taken after
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• For k jets process at lepton collider Q0 Q

Hard function

from these Wilson lines

Sm({n}, Q0, µ) =

Z

Xs

X
h0|S†

1
(n1) . . . S

†
m(nm) |XsihXs|S1(n1) . . . Sm(nm) |0i ✓(Q0 � E out) ,

(2.3)

where the state Xs contains an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region ⌦out in

which the energy is measured. TheWilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard function is given by the square of the hard-scattering amplitudes, together

with the phase-space constraints ⇥in

��
p
 �

which restrict the hard partons to the inside of

the jets,

Hm({n}, Q, µ) =
1

2Q2

X

spins

mY

i=1

Z
dEiE

d�3

i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q�

mX

i=1

Ei

⌘
�
(d�1)(~ptot)⇥in

��
p
 �

. (2.4)

For cone jets the phase-space constraint ⇥in

��
p
 �

is given by cones around the hard par-

tons. For recombination algorithms, on the other hand, the jet clustering constraints can

be quite complicated in general and can spoil factorization. However, they simplify in our

setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [28] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
. (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective
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setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [28] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among
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• Resummation 

• Infinite operators are mixed under RG evolution —> Analytical 
methods fail

(similar to the density matrix in Soper-Nagi parton shower)
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LL resummationis the evolution time. We start the evolution at t = 0 and then evolve to larger times,

which correspond to lower scales. Since we will sometimes plot quantities as a function of

the shower time t, we show the relation between t and the ratio of the low scale µs to the

high scale µh for di↵erent hard-scattering scales µh in Figure 1. The plot makes it clear

that the relevant region for perturbative calculations is t . 0.1, even after resummation.

3 RG evolution as a parton shower

To obtain a MC implementation of the leading-logarithmic evolution we make use of the

explicit form of the one-loop anomalous dimension [2], which for k-jet production has the

form

�
(1) =

0

BBBBBB@

Vk Rk 0 0 . . .

0 Vk+1 Rk+1 0 . . .

0 0 Vk+2 Rk+2 . . .

0 0 0 Vk+3 . . .

...
...

...
...

. . .

1

CCCCCCA
. (3.1)

The one-loop anomalous dimensions are given by

Vm = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nl)

4⇡
W

l

ij

� 2 i⇡
X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R)⇧ij , (3.2)

Rm = �4
X

(ij)

Ti,L · Tj,R W
m+1

ij
⇥in(nm+1) .

In [2], they were derived by considering soft limits of the amplitudes. The relevant product

of soft currents leads to a dipole structure for the angular dependence given by the factor

W
l

ij =
ni · nj

ni · nl nj · nl

(3.3)

Before discussing the evolution, let us explain how the anomalous dimension acts on the

functions Hm defined in (2.4). These functions contain both amplitudes |Mm({p})i and

their conjugate. The color matrices Ti,L acts on the i-th parton in the amplitude while

Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2Hm + Hm T3 · T4 . (3.4)

and Ti,L · Tj,L =
P

a
T a

i,L
· T a

j,L
. This is the usual color-space notation [34, 35]. While we

do not indicate this notationally, the color matrices in the real-emission operator Rm are

di↵erent. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,R Hm = T a

i Hm T a

j . (3.5)
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One-loop anomalies dimension

Figure 1. The relation between shower time t, hard scale µh and soft scale µs. We stop the lines
in the plot when µs reaches 1GeV.

coupling constants ↵s(µh) and ↵s(µs). At leading logarithmic accuracy, we only need these

functions at leading power in ↵s. The soft functions then become trivial Sm = 1 and all

higher hard functions are suppressed, Hm ⇠ ↵
m�k
s Hk. The cross section thus simplifies

to

d�LL(Q,Q0) =
1X

m=k

⌦
Hk({n }, Q, µh) ⌦ Ukm({n}, µs, µh) ⌦̂1

↵
, (2.8)

where the evolution factor can be evaluated with the leading-order expression for the

anomalous dimension �
H . We note that the Born-level cross section is given by

d�0(Q,Q0) =
⌦
Hk({n}, Q, µh)

↵
. (2.9)

This demonstrates, what we have indicated earlier, that the starting point of the evolu-

tion is the tree-level cross section. The additional piece of information needed is the color

structure since the evolution changes the colors. The paper [29] has modified the Mad-

Graph5_aMC@NLO code in such a way that it provides the full color information. We will

focus on the large-Nc limit below and we can thus simply use the color information which

MadGraph5_aMC@NLO provides for showering its tree-level events. We will come back

to this point later.

It is convenient to rewrite the exponent of the evolution matrix (2.6) at leading order

in RG-improved perturbation theory in the form

Z
µh

µs

dµ

µ
�
H

nm =

Z
↵(µh)

↵(µs)

d↵

�(↵)

↵

4⇡
�
(1)

nm =
1

2�0
ln

↵(µs)

↵(µh)
�
(1)

nm . (2.10)

Using the one-loop anomalous dimension �
(1)

nm” yields leading logarithmic accuracy in the

evolution. The prefactor

t =
1

2�0
ln

↵(µs)

↵(µh)
=

↵s

4⇡
ln

µh

µs

+O(↵2

s) (2.11)
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• LL resummation formula

• Imaginary part of Vm from cutting two eikonal propagators
• Nonzero for both incoming or outgoing
• Cancel out at e+e- or ep colliders, but induce super-

leading logs at pp colliders. Forshaw, Keates & Marzani 

’09
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0 0 Vk+2 Rk+2 . . .

0 0 0 Vk+3 . . .

...
...

...
...

. . .

1

CCCCCCA
. (3.1)

The one-loop anomalous dimensions are given by

Vm = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nl)

4⇡
W

l

ij

� 2 i⇡
X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R)⇧ij , (3.2)

Rm = �4
X

(ij)

Ti,L · Tj,R W
m+1

ij
⇥in(nm+1) .

In [2], they were derived by considering soft limits of the amplitudes. The relevant product

of soft currents leads to a dipole structure for the angular dependence given by the factor

W
l

ij =
ni · nj

ni · nl nj · nl

(3.3)

Before discussing the evolution, let us explain how the anomalous dimension acts on the

functions Hm defined in (2.4). These functions contain both amplitudes |Mm({p})i and

their conjugate. The color matrices Ti,L acts on the i-th parton in the amplitude while

Tj,R multiplies the conjugate, for example

(T1,L · T2,L + T3,R · T4,R)Hm = T1 · T2Hm + Hm T3 · T4 . (3.4)

and Ti,L · Tj,L =
P

a
T a

i,L
· T a

j,L
. This is the usual color-space notation [33, 34]. While we

do not indicate this notationally, the color matrices in the real-emission operator Rm are

di↵erent. They take an amplitude with m partons and associated color indices and map it

into an amplitude with m+ 1 partons. Explicitly, we have

Ti,L · Tj,R Hm = T a

i Hm T a

j . (3.5)
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RG evolution ≡ parton shower

In large Nc limit:

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

H2(µ = Q) = �0 (17)

Hm(µ = Q) = 0 for m > 2 (18)

Sm(µ = �Q) = 1 (19)

t =

Z
↵(Q)

↵(µ)

d↵

�(↵)

↵

4⇡
(20)

d

dt
Hm(t) = Hm(t)Vm +Hm�1(t)Rm�1 . (21)

Hm(t) = Hm(t1)e
(t�t1)Vn +

Z
t

t1

dt
0
Hm�1(t

0)Rm�1e
(t�t

0)Vn (22)

2We re-derive Dasgupta-Salam angular dipole shower!!!

Rm

" #
= + + · · · +

1

m

2
3

m+ 1
1

m

2
3

...
...

...
...

Figure 2. The action of the operator Rm on an amplitude with m legs in the large-Nc limit. The
double and single lines represent gluons and quarks, respectively.

To get the resummed result, one evolves to the appropriate value of t, which is set by the

scales µh and µs in (2.11). The leading-logarithmic cross section is obtained from the sum

d�LL(Q,Q0) =
1X

m=k

⌦
Hm(t) ⌦̂1

↵
(3.10)

=
⌦
Hk(t) +

Z
d⌦1

4⇡
Hk+1(t) +

Z
d⌦1

4⇡

Z
d⌦2

4⇡
Hk+2(t) + . . .

↵
, (3.11)

where we have explicitly written out the angular integrations over the additional emissions

generated by the shower.

To perform the integrations over the intermediate times and the angles of the emissions,

one has to resort to MC methods. However, implementing the above equations is di�cult

because the hard functions and anomalous dimension are matrices in the color space of

the involved partons and the dimension of this space rapidly grows for higher particle

multiplicities. The color structure becomes trivial in the large Nc limit. Using the trace

basis for the color structure, emissions only arise between neighbouring legs in this limit

Ti · Tj ! �Nc

2
�i,j±1 1 (3.12)

and each loop or real emission simply leads to an additional factor of Nc. We have discussed

this point in detail in [2] and reproduce an illustration from this paper in Figure 2 which

shows how the real-emission operatorRm acts on an amplitude withm legs. The amplitude

in the large Nc can be viewed as a set of color dipoles and the real emission operator adds

a new leg, splitting an existing dipole into two new ones. Similarly, the virtual correction

operator (3.2) reduces to a sum of integrals for each dipole involving neighbouring legs

Vm = �4Nc 1

X

i

Z
d⌦(nl)

4⇡
W

l

i,i+1 (3.13)

in the large Nc limit. The treatment of color is of course completely standard and exactly

what is implemented in standard, all-purpose parton shower programs. In our practical

implementation, we work with Les Houches Event (LHE) event files obtained by computing

the tree-level amplitudes with MadGraph5_aMC@NLO. The event files provide the direc-

tions of the hard partons in Hk(t) as well as their color connections. We can thus read out

all the necessary information to start the shower and to generate Hm(t) for m > k.
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To get the resummed result, one evolves to the appropriate value of t, which is set by the

scales µh and µs in (2.11). The leading-logarithmic cross section is obtained from the sum

d�LL(Q,Q0) =
1X

m=k

⌦
Hm(t) ⌦̂1

↵
(3.10)

=
⌦
Hk(t) +

Z
d⌦1

4⇡
Hk+1(t) +

Z
d⌦1

4⇡

Z
d⌦2

4⇡
Hk+2(t) + . . .

↵
, (3.11)

where we have explicitly written out the angular integrations over the additional emissions

generated by the shower.

To perform the integrations over the intermediate times and the angles of the emissions,

one has to resort to MC methods. However, implementing the above equations is di�cult

because the hard functions and anomalous dimension are matrices in the color space of

the involved partons and the dimension of this space rapidly grows for higher particle

multiplicities. The color structure becomes trivial in the large Nc limit. Using the trace

basis for the color structure, emissions only arise between neighbouring legs in this limit

Ti · Tj ! �Nc

2
�i,j±1 1 (3.12)

and each loop or real emission simply leads to an additional factor of Nc. We have discussed

this point in detail in [2] and reproduce an illustration from this paper in Figure 2 which

shows how the real-emission operatorRm acts on an amplitude withm legs. The amplitude

in the large Nc can be viewed as a set of color dipoles and the real emission operator adds

a new leg, splitting an existing dipole into two new ones. Similarly, the virtual correction

operator (3.2) reduces to a sum of integrals for each dipole involving neighbouring legs

Vm = �4Nc 1

X

i

Z
d⌦(nl)

4⇡
W

l

i,i+1 (3.13)

in the large Nc limit. The treatment of color is of course completely standard and exactly

what is implemented in standard, all-purpose parton shower programs. In our practical

implementation, we work with Les Houches Event (LHE) event files obtained by computing

the tree-level amplitudes with MadGraph5_aMC@NLO. The event files provide the direc-

tions of the hard partons in Hk(t) as well as their color connections. We can thus read out

all the necessary information to start the shower and to generate Hm(t) for m > k.
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To get the resummed result, one evolves to the appropriate value of t, which is set by the

scales µh and µs in (2.11). The leading-logarithmic cross section is obtained from the sum

d�LL(Q,Q0) =
1X

m=k

⌦
Hm(t) ⌦̂1

↵
(3.10)

=
⌦
Hk(t) +

Z
d⌦1

4⇡
Hk+1(t) +

Z
d⌦1

4⇡

Z
d⌦2

4⇡
Hk+2(t) + . . .

↵
, (3.11)

where we have explicitly written out the angular integrations over the additional emissions

generated by the shower.

To perform the integrations over the intermediate times and the angles of the emissions,

one has to resort to MC methods. However, implementing the above equations is di�cult

because the hard functions and anomalous dimension are matrices in the color space of

the involved partons and the dimension of this space rapidly grows for higher particle

multiplicities. The color structure becomes trivial in the large Nc limit. Using the trace

basis for the color structure, emissions only arise between neighbouring legs in this limit

Ti · Tj ! �Nc

2
�i,j±1 1 (3.12)

and each loop or real emission simply leads to an additional factor of Nc. We have discussed

this point in detail in [2] and reproduce an illustration from this paper in Figure 2 which

shows how the real-emission operatorRm acts on an amplitude withm legs. The amplitude

in the large Nc can be viewed as a set of color dipoles and the real emission operator adds

a new leg, splitting an existing dipole into two new ones. Similarly, the virtual correction

operator (3.2) reduces to a sum of integrals for each dipole involving neighbouring legs

Vm = �4Nc 1

X

i

Z
d⌦(nl)

4⇡
W

l

i,i+1 (3.13)

in the large Nc limit. The treatment of color is of course completely standard and exactly

what is implemented in standard, all-purpose parton shower programs. In our practical

implementation, we work with Les Houches Event (LHE) event files obtained by computing

the tree-level amplitudes with MadGraph5_aMC@NLO. The event files provide the direc-

tions of the hard partons in Hk(t) as well as their color connections. We can thus read out

all the necessary information to start the shower and to generate Hm(t) for m > k.
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To get the resummed result, one evolves to the appropriate value of t, which is set by the

scales µh and µs in (2.11). The leading-logarithmic cross section is obtained from the sum

d�LL(Q,Q0) =
1X

m=k

⌦
Hm(t) ⌦̂1

↵

=
⌦
Hk(t) +

Z
d⌦1

4⇡
Hk+1(t) +

Z
d⌦1

4⇡

Z
d⌦2

4⇡
Hk+2(t) + . . .

↵
, (3.10)

where we have explicitly written out the angular integrations over the additional emissions

generated by the shower.

To perform the integrations over the intermediate times and the angles of the emissions,

one has to resort to MC methods. Implementing the above equations is di�cult because

the hard functions and anomalous dimension are matrices in the color space of the involved

partons and the dimension of this space rapidly grows for higher particle multiplicities. The

color structure becomes trivial in the large-Nc limit. Using the trace basis for the color

structure, emissions only arise between neighbouring legs in this limit

Ti · Tj ! �Nc

2
�i,j±1 1 , (3.11)

and each loop or real emission simply leads to an additional factor of Nc. We have discussed

this point in detail in [2] and reproduce an illustration from this paper in Figure 2 which

shows how the real-emission operatorRm acts on an amplitude withm legs. The amplitude

at large Nc can be viewed as a set of color dipoles and the real emission operator adds a

new leg, splitting an existing dipole into two new ones. Similarly, the virtual correction

operator (3.2) reduces to a sum of integrals for each dipole involving neighbouring legs

Vm = �4Nc 1

X

i

Z
d⌦(nl)

4⇡
W

l

i,i+1 (3.12)

in the large-Nc limit. The treatment of color is of course completely standard and exactly

what is implemented in all parton-shower programs. In our practical implementation, we

work with Les Houches Event Files (LHEF) [35] obtained by computing the tree-level

amplitudes with MadGraph5_aMC@NLO. The event files provide the directions of the

hard partons in Hk(t) as well as their color connections. We can thus read out all the

necessary information to start the shower and to generate Hm(t) for m > k.
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and the index a is the color of the emitted gluon. Note that there is no sum over the color

a. The color sum will only be taken at the end after multiplying with the soft function.

We nevertheless use the scalar product notation Ti,L · Tj,R since it allows us to suppress

the color indices, which is one of the advantages of the color-space formalism. However,

when applying the real emission operator Rm one needs to keep in mind that one changes

into new color space and that subsequent applications of color matrices can act on the new

color index.

We have explicitly indicated the imaginary part of the virtual diagrams in the anoma-

lous dimension (3.2). The corresponding Glauber phase arises from cutting the two lines

between which the virtual gluon is exchanged and arises when i and j are both incoming or

outgoing, and the factor ⇧ij is defined to be 1 in this case and 0 otherwise. For e+e� colli-

sions, this part immediately vanishes due to color conservation
P

i
Ti = 0 but it is present

in hadronic collisions and induces the super-leading logarithms discovered in [29, 30].

Let us now discuss the solution of the RG at leading logarithmic accuracy. Using the

simple structure of the anomalous dimension matrix (3.1) and changing variables from µ

to t, the RG equation (2.5) reads

d

dt
Hm(t) = Hm(t)Vm +Hm�1(t)Rm�1 , (3.6)

where we have suppressed the dependence on the other variables. The solution of the

homogenous part of the equation is simply an exponential and we can thus rewrite (3.6) as

Hm(t) = Hm(t0) e
(t�t0)Vm +

Z
t

t0

dt
0
Hm�1(t

0)Rm�1 e
(t�t

0
)Vm . (3.7)

This is the form in which parton-shower equations are usually presented: we evolve from

t0 to time t either without an emission (the first part), or by adding an additional emission

to a lower-leg amplitude. In this context e(t�t
0
)Vm is usually called the Sudakov factor, but

since our problem is single logarithmic, this nomenclature does not quite fit. To map to

expression (2.8), we note that

Hm(t) ⌘ Hk({n}, Q, µh)Ukm({n}, µs, µh) (3.8)

and that the initial condition is Hm(0) = 0 for all m > k. To solve the equation for a

process with k jets, one starts with m = k and then uses (3.7) iteratively to generate all

higher functions

Hk(t) = Hk(0) e
tVk

Hk+1(t) =

Z
t

0

dt
0
Hk(t

0)Rk e
(t�t

0
)Vk+1 (3.9)

Hk+2(t) =

Z
t

0

dt
0
Hk+1(t

0)Rk+1 e
(t�t

0
)Vk+2

Hk+3(t) = . . .
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Figure 1. The relation between shower time t, hard scale µh and soft scale µs. We stop the lines
in the plot when µs reaches 1GeV.

coupling constants ↵s(µh) and ↵s(µs). At leading logarithmic accuracy, we only need these

functions at leading power in ↵s. The soft functions then become trivial Sm = 1 and all

higher-multiplicity hard functions are suppressed, Hm ⇠ ↵
m�k
s Hk. The cross section thus

simplifies to

d�
LL(Q,Q0) =

1X

m=k

⌦
Hk({n}, Q, µh) ⌦ Ukm({n}, µs, µh) ⌦̂1

↵
, (2.8)

where the evolution factor can be evaluated with the leading-order expression for the

anomalous dimension �
H . We note that the Born-level cross section is given by

d�0(Q,Q0) =
⌦
Hk({n}, Q, µh)

↵
. (2.9)

This demonstrates that the starting point of the evolution is the tree-level cross section, as

we have indicated earlier. The additional piece of information needed is the color structure

since the evolution changes the colors. The paper [32] has modified the MadGraph code

in such a way that it provides the full color information. We will focus on the large-Nc

limit below and use the color information which MadGraph provides for showering its

tree-level events. We will come back to this point later.

It is convenient to rewrite the exponent of the evolution matrix (2.6) at leading order

in RG-improved perturbation theory in the form

Z
µh

µs

dµ

µ
�
H

nm =

Z
↵(µh)

↵(µs)

d↵

�(↵)

↵

4⇡
�
(1)

nm =
1

2�0
ln

↵(µs)

↵(µh)
�
(1)

nm . (2.10)

Using the one-loop anomalous-dimension matrix �
(1)

nm yields leading logarithmic accuracy

in the evolution. The prefactor

t =
1

2�0
ln

↵(µs)

↵(µh)
=

↵s

4⇡
ln

µh

µs

+O(↵2

s) (2.11)

– 5 –
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SCETI : Light jet mass

ALEPH
NLL (global)
NLL

energies but at fixed directions {n} = {n1, . . . , nm}, where the ni’s are light-like vectors.

The soft functions Sm+1 consist of m + 2 Wilson lines along the directions {n} of the m

hard partons and the two jets along n
µ = (1,~n) and n̄

µ = (1,�~n). Both of these are

matrices in color space [32, 33], and h. . . i indicates a sum over color indices. The symbol

⌦ indicates that one has to integrate over the m directions of the emissions into the right

hemisphere. The form of the factorization theorem (1.4) is basically the same as the one

for wide-angle cone-jet cross sections derived in [20]. To see the connection, one should

view the right hemisphere as the inside of a jet which contains hard particles with momenta

p
µ
⇠ !R and the left hemisphere as the outside region where a veto on radiation is imposed

which constrains the momenta to p
µ
⇠ !L.

Before analyzing the factorization formula (1.4) in more detail and providing operator

definitions for its ingredients, we now turn the light-jet mass ⇢` . Due to left-right symmetry

and its definition, ⇢` is directly related to the left-jet mass ⇢L = M
2
L/Q

2 according to

d�

d⇢`
= 2

d�

d⇢L
�

d�

d⇢h

����
⇢L=⇢h=⇢`

. (1.5)

Instead of the light-jet mass one can therefore equally well analyze the factorization for

⇢L. If one only measures the left-jet mass, the mass of the right jet will typically be large,

so that scale hierarchy c.) applies. We find that the cross section for the left-jet mass

factorizes as

d�

dM
2
L

=
X

i=q,q̄,g

Z 1

0
d!L Ji(M

2
L �Q!L)

1X

m=1

⌦
H

i
m({n}, Q)⌦ Sm({n},!L)

↵
. (1.6)

Since the unobserved radiation in the right hemisphere is typically hard, such that pµ ⇠ Q,

we no longer encounter a jet function for this hemisphere, in contrast to the previous case

(1.4). The hard functions also di↵er from the function H
S
m encountered for the hemisphere

soft functions. Rather than Wilson-line matrix elements as in (1.4), the functions H
i
m in

this case are given by squared QCD amplitudes with a single parton of flavor i in the left

hemisphere propagating along the n̄-direction and m partons in the right hemisphere. The

subsequent branchings of the hard parton on the left are described by the jet functions Ji.

A graphical representation of the factorization theorems is shown in Figure 1.

Our paper is organized as follows. In the next section, we will flesh out the factorization

formulas for the hemisphere soft function and for the light-jet mass event shape and discuss

their derivation, which can be obtained following similar steps as in [20]. The soft functions

in these theorems can be related to the coft functions computed in that reference so that the

only new ingredients to our factorization formulas are the hard functions. After computing

these in Section 3 up to O(↵2
s), we verify that we reproduce the known NNLO result for

the hemisphere soft function in the limit !L ! 0. Next, we analyze the light-jet mass

distribution in Section 4 and compare to the numerical fixed-order result for this quantity.

In Section 5 we use the known result for the leading non-global logarithms in the hemisphere

soft function to obtain numerical results for the light-jet mass at NLL accuracy. In Section

6 we discuss the necessary steps to perform higher-order resummation for this event shape

and conclude.
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ML ⌧ MR ⇠ Q

Dasgupta & Salam ‘01; Becher, Pacjek & DYS ’16

• Sizeable NGL corrections !!!
• Finite Nc correction is small Hatta & Ueda, ‘13

• Non-perturbative corrections not only linear shift
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Figure 1. The red bands show the NLL result for the narrow broadening (left) and the wide
broadening (right), compared to Delphi data (blue) [29]. The green line is the purely global part
of the narrow broadening distribution.

=
2CF

β2
0

[ 4π

αs(µh)

(

1−
1

r
− ln r

)

+

(

γcusp1

γcusp0
−

β1
β0

)

(1− r + ln r) +
β1
2β0

ln2 r

+
3β0
2

ln r − β0 ln r ln
Q2

µ2
h

]

, (4.6)

where r = αs(µ)/αs(µh). The non-global evolution factor is the same as in the light-jet-

mass case and we use the parametrization [19]

SNG(µ, µh) ≈ exp

(

−CACF
π2

3
u2

1 + (au)2

1 + (bu)c

)

, (4.7)

with

u =
1

β0
ln

αs(µ)

αs(µh)
, (4.8)

where the constants a = 0.85CA , b = 0.86CA, c = 1.33 were determined by fitting to

the result of a parton-shower computation in the large-Nc limit. The numerical result for

Nc = 3 was recently obtained in [25]. Numerically, the corrections to the large-Nc limit

are small as long as the exact two-loop color factor is accounted for, as is done in (4.7).

In the low energy range ln(µτ̄L) counts as O(1) and we can approximate

ηL ≈ η =
CFαs(µ)

π
ln

Q2

µ2
. (4.9)

After this, we can analytically invert the Laplace transformation and obtain

1

σ0

dσ

dbL
= UH(µ, µh, Q)SNG(µ, µh)

e−γEη

Γ(η)

1

bL

(

bL
µ

)η

I(η) . (4.10)

We find that our NLL resummation formula is basically the square-root of (43) in [12]

up to the non-global evolution factor. In order to calculate the differential distribution

one can use the above equation directly or first integrate it and then take the derivative.
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DELPHI
NLL global
NLL

The key observation is that the hard partons in the unobserved right hemisphere can emit

soft partons into the left hemisphere. These emissions are described by soft Wilson lines

along the hard partons so that we end up with the factorization formula

dσ

dbL
=

∑

f=q,q̄,g

∫

dbsL

∫

dd−2p⊥L Jf (bL − bsL, p
⊥
L )

∞
∑

m=1

⟨Hf
m({n}, Q)⊗ Sm({n}, bsL,−p⊥L)⟩ ,

(2.1)

where the hard function Hf
m({n}, Q) describes m hard partons flying along the directions

{n} = {n1, . . . , nm} into the right hemisphere and a single energetic parton along n̄µ =

(1,−n⃗T ) to the left. The soft function Sm is given by Wilson lines along thesem+1 partons

and the jet function Jf describes the splitting of the left parton with flavor f into a low-mass

jet. The symbol ⊗ indicates than one has to integrate over the direction of the hard partons

and ⟨. . . ⟩ denotes the color trace, see [21] for details on the notation and a derivation of

the multi-Wilson-line structure from SCET. Note that none of the factorization discussion

is affected by the presence of the regulator [23] which is only applied to the phase-space

integrals but leaves the amplitudes unchanged. However, due to the regulator the product

of soft and jet functions has implicit dependence on the hard scale Q. This dependence,

called the collinear anomaly [14], will be made manifest below.

The hard function has the same operator definition as in the light jet mass case

H
f
m({n}, Q) =

1

2Q

m
∏

j=1

∫ dEj E
d−3
j

(2π)d−2
|Mf

m+1({p0, p})⟩⟨M
f
m+1({p0, p})|

×ΘR
({

p
})

(2π)d δ(Q− Etot) δ
(d−1)(p⃗tot) , (2.2)

where pµ0 = Q n̄µ/2 is the momentum of the single hard parton of flavor f ∈ {q, q̄, g} in

the left hemisphere, and the amplitudes |Mf
m+1({p0, p})⟩ are standard QCD amplitudes

for the decay of a virtual photon into (m + 1) partons. The function ΘR
({

p
})

enforces

that the m partons with momenta
{

p
}

are in the right hemisphere.

The associated soft function has the form

Sm({n}, bL,p⊥L ) =
∫

Xs,reg

∑

δ
(

bL − 1
2

∑

i∈XL

|p⊥L,i|
)

δd−2(p⊥XL
− p⊥L)

× ⟨0|S†
0(n̄)S

†
1(n1) . . .S

†
m(nm) |Xs⟩⟨Xs|S0(n̄)S1(n1) . . .Sm(nm) |0⟩ . (2.3)

The integrals over phase space are regularized using the regulator [23], whose explicit form

will be given when we compute the one-loop soft function in (3.4). This function contains

two δ-function constraints: the first one fixes the contribution to the left broadening and

the second one the total transverse momentum. The second constraint is necessary due to

recoil effects. Only the total transverse momentum in each hemisphere vanishes, so that

the soft and collinear radiations carry equal an opposite transverse momentum, see (2.1).

We therefore need to compute the soft function for a fixed transverse momentum of the

collinear radiation. The jet function Jf (bL− bsL, p
⊥
L ) is the same as the one relevant for the

total broadening and its operator definition can be found in (4) of [12].
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SCETII : Narrow broadening
Becher, Rahn & DYS ’17

• In SCETII NP corrections to the anomaly 
coefficients are dominant. (Becher & Bell 

‘13) 

One advantage of the latter scheme is that the resummed distribution is automatically

normalized. We denote the integrated spectrum by

R(BL) =

∫ QBL

0
dbL

1

σ0

dσ

dbL
= SNG(µ, µh)Σq(BL) , (4.11)

where the global part is given by

Σq(BL) = UH(µ, µh, Q)
e−γEη

Γ(η + 1)

(

QBL

µ

)η

I(η) . (4.12)

As in the light-jet case, the non-global effects simply enter as a prefactor at NLL accuracy

which multiplies the quantity Σq(BL) familiar from the coherent branching formalism [26–

28]. The prefactor is absent for wide broadening, which to NLL is given by

R(BW ) = [Σq(BW )]2 . (4.13)

Using relation (1.2), we then obtain the narrow broadening, which can be compared to

LEP measurements from the Delphi [29] or OPAL [30] collaborations. In Figure 1 we

show the NLL predictions, compared to the Delphi measurements. For the plots, we use

αs(MZ) = 0.1181 [31] and estimate the uncertainty by varying each of the scales µh and µ

by a factor two around their default values and taking the envelope of the scale variations.

It is clear that the distributions are affected by nonperturbative effects in the peak

region, and it turns out that the nonperturbative effects are logarithmically enhanced for

jet broadening [32, 33]. The paper [33] demonstrated that the dominant effects are non-

perturbative corrections to the anomaly coefficient and that these corrections are obtained

from the same nonperturbative matrix element A which is responsible for the nonpertur-

bative shift in the thrust distribution and other event shapes [34]. For narrow broadening,

these results imply that the leading nonperturbative effects are obtained from shifting the

distribution by

BN → BN −
A
2
ln

1

BN
(4.14)

and the value extracted from the thrust distribution is A ≈ 0.3GeV [6]. Near the peak,

this would imply shifts of ∆BN ≈ 0.007 and ∆BW ≈ 0.006 in the two distributions, in

qualitative agreement with the data.

We find it remarkable that the leading nonperturbative effects in a non-global observ-

able are related to the shift in thrust. The underlying mechanism is of course that the

collinear anomaly connects the enhanced nonperturbative effects in the soft functions Sm

to the ones in the jet function, which is the same as in the global variants of broadening.

Through the anomaly, this in turn is connected to the nonperturbative effect in the much

simpler soft functions relevant in the global case.

In practice, the logarithmically enhanced nonperturbative effects might not be suf-

ficient to obtain satisfactory agreement with data, and also non-logarithmic and non-

universal shifts should be included, as well as other shape parameters. Before analyzing

this further, one should include the matching to fixed-order perturbation theory and, if

possible, increase the logarithmic accuracy of the resummation. We will not pursue these

issues further for the moment.
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𝒜 ≈ 0.3 extracted from thrust which 
implies shifts of ΔBN ≈ 0.007 near peak



• Dijet cross section with a gap 

• Soft radiations from two Wilson lines (global)

• Leading NGLs at two-loops

• Large gap limit:

• GL resummation at the LHC See Makris’s talk 

• NGL: coft mode, jet radius resummation Becher, 

Neubert, Rothen & DYS `15; Chien, Hornig, Lee `15

• Narrow gap limit: 

• Collinear enhanced power corrections
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Collinear limit and NGLs

�LL
GL

�0
= exp [�8CF�y t]

Figure 3. Left: Two-loop global and non-global coe�cients as the function of gap size �y.
Right: Comparison of LL resummation and fixed-order expansion results with �y = 1, where the
expansion results are performed up to four-loop order.

The leading NGLs to the same observable arise at two-loops and are given by [2, 44]

�
LL

NGL

�0
= 4CFCA


�2⇡2

3
+ 4Li2

�
e
�2�y

��
t
2
. (4.2)

This contribution arises from a hard gluon emission inside one of the jets, which in turn

emits a soft gluon into the gap between the jets. It is encoded in the term H3 ⌦S3 in the

factorization formula (2.1).

In Figure 3, we numerically compare the two-loop global and non-global coe�cients

as the function of gap size �y in the large Nc limit. When the veto area is small, the

gap fraction is dominated by the non-global part but with increasing veto area the global

logarithms become more and more important. Since the two contributions have opposite

sign, cancellations between global and non-global contributions can occur at intermediate

values of the gap size. To understand this behavior better, it is instructive to expand (4.2)

in the small �y region

�
LL

NGL

�0
= 4CFCA

h
8�y

�
ln(2�y)� 1

�
� 4�y

2 + . . .

i
t
2
, (4.3)

The expansion (4.3) shows that the two-loop non-global logrithmic term is only suppressed

by a single power of �y, while the global piece involves two powers. The reason for this

scaling is that in the non-global piece only one gluon is in the gap of size �y, while in the

global piece both gluons are. One further observes that in the large Nc limit the �y
2 part

of the non-global piece precisely cancels the global piece. Phenomenologically, the limit of

a small gap is for example relevant for isolation cone cross sections, where the veto typically

is only applied in a small angular region. Below, we will see an explicit example where the

higher-order global and non-global e↵ects cancel for a photon isolation cross section.

Interestingly, the leading term in (4.3) involves a logarithm of �y. This contribution

corresponds to a collinear enhancement which arises when both the gluon in the gap and

the one outside are close to the boundary. These types of collinear logarithms were studied
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• In narrow gap limit:

• Collinear enhancement from 
boundary region (Hatta, et.al. 

’17) 

• Power correction, interesting to 
study in SCET framework

• An example: photon isolation (see 
latter)
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Leading log at two loop
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The leading NGLs to the same observable arise at two-loops and are given by [2, 42]
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This contribution arises from a hard gluon emission inside one of the jets, which in turn

emits a soft gluon into the gap between the jets. It is encoded in the term H3 ⌦S3 in the

factorization formula (2.1).

In Figure 3, we numerically compare the two-loop global and non-global coe�cients

as the function of gap size �y in the large Nc limit. When the veto area is small, the

gap fraction is dominated by the non-global part but with increasing veto area the global

logarithms become more and more important. Since the two contributions have opposite

sign, cancellations between global and non-global contributions can occur at intermediate

values of the gap size. To understand this behavior better, it is instructive to expand (4.2)
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The expansion (4.3) shows that the two-loop non-global logrithmic term is only suppressed

by a single power of �y, while the global piece involves two powers. The reason for this

scaling is that in the non-global piece only one gluon is in the gap of size �y, while in the

global piece both gluons are. One further observes that in the large Nc limit the �y
2 part

of the non-global piece precisely cancels the global piece. Phenomenologically, the limit of

a small gap is for example relevant for isolation cone cross sections, where the veto typically

is only applied in a small angular region. Below, we will see an explicit example where the

higher-order global and non-global e↵ects cancel for a photon isolation cross section.

Interestingly, the leading term in (4.3) involves a logarithm of �y. This contribution

corresponds to a collinear enhancement which arises when both the gluon in the gap and

the one outside are close to the boundary. These types of collinear logarithms were studied
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This contribution arises from a hard gluon emission inside one of the jets, which in turn

emits a soft gluon into the gap between the jets. It is encoded in the term H3 ⌦S3 in the

factorization formula (2.1).

In Figure 3, we numerically compare the two-loop global and non-global coe�cients

as the function of gap size �y in the large Nc limit. When the veto area is small, the

gap fraction is dominated by the non-global part but with increasing veto area the global

logarithms become more and more important. Since the two contributions have opposite

sign, cancellations between global and non-global contributions can occur at intermediate

values of the gap size. To understand this behavior better, it is instructive to expand (4.2)
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The expansion (4.3) shows that the two-loop non-global logrithmic term is only suppressed

by a single power of �y, while the global piece involves two powers. The reason for this

scaling is that in the non-global piece only one gluon is in the gap of size �y, while in the

global piece both gluons are. One further observes that in the large Nc limit the �y
2 part

of the non-global piece precisely cancels the global piece. Phenomenologically, the limit of

a small gap is for example relevant for isolation cone cross sections, where the veto typically

is only applied in a small angular region. Below, we will see an explicit example where the

higher-order global and non-global e↵ects cancel for a photon isolation cross section.

Interestingly, the leading term in (4.3) involves a logarithm of �y. This contribution

corresponds to a collinear enhancement which arises when both the gluon in the gap and

the one outside are close to the boundary. These types of collinear logarithms were studied
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Automated resummation for Non-global observables

• Use Madgraph5_aMC@NLO generator

• event file with directions and large-Nc color connections of 
hard partons

• provides lowest multiplicity hard function for given process

• Run our shower on each event to generate additional partons 
and write result back into event file 

• Analyze events, according to cuts on hard partons, obtain 
resummed cross section with hard cuts and veto scale

12

(Balsiger, Becher, DYS, 1803.07045)

Figure 1. The relation between shower time t, hard scale µh and soft scale µs. We stop the lines
in the plot when µs reaches 1GeV.

coupling constants ↵s(µh) and ↵s(µs). At leading logarithmic accuracy, we only need these

functions at leading power in ↵s. The soft functions then become trivial Sm = 1 and all

higher hard functions are suppressed, Hm ⇠ ↵
m�k
s Hk. The cross section thus simplifies

to

d�LL(Q,Q0) =
1X

m=k

⌦
Hk({n }, Q, µh) ⌦ Ukm({n}, µs, µh) ⌦̂1

↵
, (2.8)

where the evolution factor can be evaluated with the leading-order expression for the

anomalous dimension �
H . We note that the Born-level cross section is given by

d�0(Q,Q0) =
⌦
Hk({n}, Q, µh)

↵
. (2.9)

This demonstrates, what we have indicated earlier, that the starting point of the evolu-

tion is the tree-level cross section. The additional piece of information needed is the color

structure since the evolution changes the colors. The paper [29] has modified the Mad-

Graph5_aMC@NLO code in such a way that it provides the full color information. We will

focus on the large-Nc limit below and we can thus simply use the color information which

MadGraph5_aMC@NLO provides for showering its tree-level events. We will come back

to this point later.

It is convenient to rewrite the exponent of the evolution matrix (2.6) at leading order

in RG-improved perturbation theory in the form

Z
µh

µs

dµ

µ
�
H

nm =

Z
↵(µh)

↵(µs)

d↵

�(↵)

↵

4⇡
�
(1)

nm =
1

2�0
ln

↵(µs)

↵(µh)
�
(1)

nm . (2.10)

Using the one-loop anomalous dimension �
(1)

nm” yields leading logarithmic accuracy in the

evolution. The prefactor

t =
1

2�0
ln

↵(µs)

↵(µh)
=

↵s

4⇡
ln

µh

µs

+O(↵2

s) (2.11)

– 5 –



• ATLAS ’16 imposes                                          
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Breakdown of Conventional Factorization for Isolated Photon Cross Sections

Edmond L. Berger,1 Xiaofeng Guo,2 Jianwei Qiu2

1High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011

(Received 12 December 1995)
Using e1e2 ! g 1 X as an example, we show that the conventional factorization theorem in

perturbative quantum chromodynamics breaks down for isolated photon cross sections in a well-defined
part of phase space. Implications and physical consequences are discussed.

PACS numbers: 12.38.Bx, 13.65.+i, 12.38.Qk

High energy photons are considered an excellent probe
of short-distance physics in strong interactions. They
couple directly to pointlike quark constituents and do not
interact strongly once produced [1]. Photons can also
result from long-distance fragmentation of quarks and
gluons, themselves produced in short-distance hard colli-
sions. Consequently, the inclusive photon cross section at
high energy includes both short-distance direct and long-
distance fragmentation contributions, and the cross section
is not completely perturbative. Nevertheless, in accord
with the factorization theorem of perturbative quantum
chromodynamics (QCD) [2], all long-distance physics
associated with parton-to-photon fragmentation can be
represented by nonperturbative, but well-defined and uni-
versal photon fragmentation functions, and the remainder
of the theoretical expression for the cross section, calcu-
lable in QCD perturbation theory, is insensitive to the in-
frared region of the theory.
However, for observational reasons the inclusive cross

section may not be measurable at high energy. Owing to
backgrounds from, e.g., p0 ! gg, a single high energy
photon is observed and the cross section is measured
only when the photon is relatively isolated. Isolation
procedures differ in their details in different experiments
at electron-positron and hadron-hadron collider facilities.
In this Letter, we model the essence of isolation by
drawing a cone of half-angle d about the direction of
the photon’s momentum, and we define the isolated cross
section to be that for photons accompanied by less than
a specified amount of hadronic energy in the cone, e.g.,
Econe

h # Emax. While this is but one of the possible
definitions of isolation, other choices change only the
details of our analysis, not the basic physics. Because
of isolation, the experimental cross section for isolated
photons depends explicitly on the isolation parameters d
and Emax.
A proper theoretical treatment of the cross section

for isolated photons requires careful consideration of the
origins and cancellation of both infrared and collinear
singularities in QCD perturbation theory. In a theoretical
calculation, isolation of the photon restricts the final-
state phase space accessible to accompanying quarks and
gluons. In this Letter, using e1e2 ! gX as an example,

we demonstrate that this phase space restriction inevitably
breaks the perfect cancellation of infrared singularities
between real gluon emission and virtual gluon exchange
diagrams that is required to yield finite cross sections in
each perturbative order.
Breakdown of the cancellation of infrared singularities

appears first at next-to-leading order in the fragmentation
contributions. The associated physics can be summarized
as follows. In the fragmentation contribution, sketched
in Fig. 1, hadronic energy in the isolation cone has
two sources: (a) energy from parton fragmentation Efrag
and (b) energy from nonfragmenting final-state partons
Econe

partons that enter the cone. When the maximum hadronic
energy allowed in the isolation cone is saturated by the
fragmentation energy Emax ≠ Efrag, there is no allowance
for energy in the cone from other final-state partons. In
particular, if there is a gluon in the final state, the phase
space for this gluon becomes restricted. By contrast,
isolation does not affect the virtual gluon exchange
contribution. Therefore, in the isolated case, there is a
possibility that the infrared singularity from the virtual
contribution may not be canceled completely by the
restricted real contribution. In the remainder of this

FIG. 1. Illustration of an isolation cone containing a parton c
that fragments into a g plus hadronic energy Efrag. In addition,
a gluon enters the cone and fragments giving hadronic energy
Eparton.
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Figure 8. E↵ect of the isolation cut in e
+
e
� ! � + X. The plot shows a comparison of the

resummed result (dots) with the one-loop contribution (dashed lines) and the global logarithms
(dotted line).

the discussion in Section 4.1. The situation is interesting for isolation cones because the

logarithms are typically large (experiments often restrict the isolation energy to a few

GeVs), while the area tends to be small. If we substitute Eiso ! Eiso(�) from (4.8) into

(4.12), we can compute the soft function for the smooth-cone. In the approximation (4.11),

we find the smooth-cone result is obtained from the fixed cone one-loop result using the

substitution

ln
✏�E�

µ
�! ln

✏�e
�n

E�

µ
(4.13)

In other words, the smooth-cone isolation is more restrictive than fixed-cone isolation by a

factor en. A computation such as [55] which uses smooth-cone isolation with ✏� = 0.1 and

n = 2, therefore has the same size logarithms as a fixed-cone computation with ✏� = 0.01.

For photon energies of a few hundred GeVs, this indeed matches up with the fixed-cone

isolation criterion

E
T

iso = 4.8GeV + 0.0042ET

� (4.14)

used in the ATLAS analysis [59].

As we discussed in Section 4.1 above, the two-loop non-global and global logarithms

can cancel each other out and for photon isolation results displayed in Figure 8, this e↵ect

is quite pronounced. In this plot we consider e
+
e
� ! � +X with an isolation cone with

half-angle � = ⇡/4 and compare the resummed result with the one-loop logarithm and with

the global contribution, which is given by the exponential of the one-loop logarithm. We

observe that higher-order e↵ects are quite small down to relatively low isolation energies

which correspond to larger values of t in the figure. Resumming the global logarithms leads

to a much larger e↵ect, which cancels after accounting also for the non-global contribution.

By now there are many papers in the SCET literature which resum observables up to

non-global contributions. This example demonstrates that such estimates of higher-order
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Isolated photon production

• Experiments use isolation cone to reduce 
photon from hard scattering from photons 
due to hadron decays such as π0→γγ. 
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Effect of isolation cut at lepton collider

�
�0

Ein < Eiso = ✏� E�

Figure 8. Pictorial representation of the factorization for isolated photon production. The black
lines represent hard partons, while the wavy red lines indicate soft radiation. The energy inside the
isolation cone of half-angle �0 is restricted to be smaller than ✏� E� .

which is still in perturbative region. In order to estimate non-perturbative corrections we

run MC tools to perform a crude estimation. Specifically, we run Pythia with and without

non-perturbative corrections, and compare di↵erent results in the right plot of Figure ??.

The green histogram is generated with only initial and final state radiation, while the black

one is generated with AMBT1 tune which includes default non-perturbative corrections.

Physically, the dominant non-perturbative corrections come from underline events, which

will cause the distribution to be shifted towards high energy region. Numerically, as is

shown this power correction is about 25% when Q0 = 20 GeV for the kinematic configu-

ration we considered. Therefore we anticipate the same order non-pertabative corrections

will contribution to our resummation results. In this paper we will not pursue detailed

studies further.

[But which e↵ects will shift our results up to the data??]

4.3 Isolation cone cross sections and photon production

A second important class of non-global observables are cross sections with isolation cones

in which only soft hadronic radiation is allowed. The most important example is photon

production, where an isolation cone is needed to separate the direct production of a pho-

ton in the underlying hard collision from the photons which arise in hadron decays such

as ⇡
0 ! ��. Imposing that Eiso, the hadronic energy inside the cone with half-opening

angle �0, is much smaller than the photon energy E� suppresses energetic photons originat-

ing from decays of boosted hadrons. In the following, we will discuss photon production,

but similar cuts are also used to isolate leptons, for example in SUSY searches. Impos-

ing the isolation requirement induces logarithms ↵
n
s ln

n
✏� , with ”✏� = E

iso
/E� , into the

perturbative computation and in the following we want to study their resummation.

Already at the parton level, there are two mechanisms to produce a photon. In ad-

dition to the direct emission, one can produce an energetic quark which then fragments

into a photon accompanied by a collinear quark. This second mechanism involves the

fragmentation function, a non-perturbative object which needs to be extracted from data.

In general, the two partonic contributions are not individually well-defined. At NLO, the
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direct production su↵ers from a divergence when a quark becomes collinear to the pho-

ton and this divergence is absorbed into the fragmentation function. The isolation cone

suppresses fragmentation since it limits the amount of radiation which accompanies the

photon. Indeed, Frixione has shown that one can modify the isolation criterion to elimi-

nate fragmentation altogether [53]. For any angle � < �0, where �0 is the isolation cone

angle, he imposes that the energy inside the cone of half-opening angle � is smaller than

Eiso(�) = ✏�E�

✓
1� cos �

1� cos �0

◆
n

, (4.8)

with n > 0. Together with radiation collinear to the photon, this smooth-cone isolation

eliminates the fragmentation contribution, which is centered at � = 0. This simplifies

the theoretical computations and it is appealing because it eliminates the poorly known

fragmentation function. At this time all NNLO computations of photon production [54–56]

rely on the Frixione cone for isolation, while the result with a fixed cone is only known at

NLO in the form of the JetPhox code [57]. Due to the granularity of the calorimeter,

a smooth criterion such as (4.8) cannot be directly implemented in experiments which

therefore use fixed-cone isolation. To compare with experimental data, the NNLO results

tune the parameters ✏� and n such that the NLO predictions using (4.8) are numerically

similar to fixed-cone computations including fragmentation. Below, we will derive such a

parameter relation based on the analysis of soft radiation.

The logarithms we want to study become large in the limit ✏� ! 0. In this limit

the radiation inside the cone becomes very soft. It is well known that the emission of

soft quarks is power suppressed and for this reason, fragmentation is a power suppressed

e↵ect for ✏� ! 0 which we do not need to consider. (The same holds true for threshold

resummation studied in [58] and implemented into a numerical code PeTeR [59].) As we

discussed above, in the hadron collider case, there are some interesting open issues and

we therefore first derive a factorization theorem for e
+
e
�. The kinematics is shown in

Figure 8. One has hard partons outside the cone with energies of the order of the photon

energy E� and soft radiation inside the cone. This is precisely the situation captured by

(2.1), except that the soft region is now defined by the photon instead of the hard jets.

Specializing the general formula to the photon case, we have

d�(✏� , �0)

dE�

=
1X

m=2

hH�+m ({n}, E� , Q, �0)⌦ Sm ({n}, ✏� E� , �0)i , (4.9)

where the photon energy can be parametrised as E� = x� Q/2. The hard functions H�+m

are the squared amplitudes for the photon and m-parton process and are defined as in

(2.4). In addition to the integrals over the energies over the m partons at fixed directions

{n} = {n1, · · · , nm} outside the isolation cone, they include an integral over the photon

phase-space together with its constraints (the energy E� in the example (4.9)). The soft

functions are given by the Wilson line matrix element (2.3) with the energy constraint

applied to radiation inside the photon cone.

We can use the automated framework of the previous chapter to resum the large

logarithms in the isolation-cone cross section, but it is interesting to analyze the NLO
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Figure 9. E↵ect of the isolation cut in e
+
e
� ! � + X. The plot shows a comparison of the

resummed result (red line) with the one-loop contribution (orange line) and the global logarithms
(dashed purple line).

For a fixed cone-energy Eiso, the energy integration produces a divergences with an asso-

ciated logarithm, which gets multiplied by the angular area of the cone, in line with the

discussion in Section 4.1. The situation is interesting for isolation cones because the loga-

rithms are typically large (experiments often restrict the isolation energy to a few GeVs),

while the area tends to be small. If we substitute Eiso ! Eiso(�) from (4.8) into (4.12),

we can compute the soft function for the smooth-cone. In the approximation (4.11), we

find that the smooth-cone result is obtained from the fixed cone one-loop result using the

substitution

ln
✏�E�

µ
�! ln

✏�e
�n

E�

µ
. (4.13)

In other words, the smooth-cone isolation is more restrictive than fixed-cone isolation by a

factor en. A computation such as [55] which uses smooth-cone isolation with ✏� = 0.1 and

n = 2, therefore has the same size logarithms as a fixed-cone computation with ✏� = 0.01.

For photon energies of a few hundred GeVs, this indeed matches up with the fixed-cone

isolation criterion

E
iso

T = 4.8GeV + 0.0042ET

� (4.14)

used in the ATLAS analysis [59]. ATLAS uses a cone of R = 0.4 in the rapidity and

azimuthal-angle plane. A particle is considered to be inside the cone (and therefore belongs

to the “out”-region), if �y
2 +��

2
< R

2, where �y is the rapidity di↵erence and �� the

di↵erence of the azimuthal angle between the particle and the photon.

As we discussed in Section 4.1 above, the two-loop non-global and global logarithms

can cancel each other out and for photon isolation results displayed in Figure 9, this e↵ect

is quite pronounced. In this plot we consider e
+
e
� ! � +X with an isolation cone with

half-angle �0 = ⇡/4 and compare the resummed result with the one-loop logarithm and

with the global contribution, which is given by the exponential of the one-loop logarithm.

We observe that higher-order e↵ects are quite small down to relatively low isolation energies
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�

T
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T
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n
s R

2 lnn�1(R) lnn(✏�), since they involve only a single gluon in the veto region.
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�(t)/�0 = 1 + S(1)
t+ S(2)

t
2 + . . . (4.15)

in the shower time (2.11) take the form

S(1) =� 4Nc

Z

⌦

3outW
3

12,
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n = 2, therefore has the same size logarithms as a fixed-cone computation with ✏� = 0.01.
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Figure 4. Definition of gap region for dijet system in the rapidity and azimuthal plane. If any
jet radiating into the gray region with transverse momentum is larger than Q0, then this event is
vetoed. The two red dashed lines indicate the approximated cuts used in [13], which imposed the
veto only in the region between these two lines

in the recent paper [47] which presented a version of the BMS equation which allows for

their all-order resummation. It would be interesting to analyze this in our e↵ective field

theory framework. The corresponding e↵ective theory would involve boundary modes to

describe the emissions near the gap boundary. The problem is however challenging because

the gap fraction is suppressed by a power of �y in the limit �y ! 0.

4.2 Gaps between jets

We now perform the resummation for the gap fraction at the LHC, as measured by the

ATLAS experiment [48, 49]. The gap fraction is defined as the fraction of dijet events that

do not have an additional jet with transverse momentum greater than a given veto scale

Q0 in the rapidity interval bounded by the dijet system, and we will study it as a function

of pT , the average transverse momentum of the two leading jets. More explicitly, the gap

fraction is defined as the ratio of the cross sections with and without veto

R(pT , Q0) =
�2�jet(pT , Q0)

�2�jet(pT , Q0 = pT )
. (4.4)

Below, we will compute R(pT , Q0) for di↵erent gap sizes defined by the rapidity di↵erence

�y between the two leading jets. The precise geometry of the gap is shown in Figure 4.

The jets are reconstructed with the anti-kT jet algorithm with R = 0.6 and are required

to have rapidity |y| < 4.4.

The ATLAS paper [48] observed that MC predictions are not always consistent with

ATLAS data. For example the NLO predictions matched to PYTHIA [51] and HERWIG

[52] using POWHEG [50] are lower than data, especially in the region of large jet pT

and rapidity di↵erence �y between the jets. Specifically, for 210 GeV < pT < 240 GeV

and 4 < �y < 5, POWHEG+HERWIG underestimates the data by about 40%, and

POWHEG+PYTHIA by about 20%.

For small values of Q0, the gap fraction R(pT , Q0) involves large logarithms of the

form ↵
n
s ln

m
pT /Q0. It is interesting to perform systematic soft gluon resummations to

try to understand the di↵erence between theoretical prediction and experimental data.

The resummation of the leading logarithms has been studied in the papers [13, 53, 54].
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to have rapidity |y| < 4.4.
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ATLAS data. For example the NLO predictions matched to PYTHIA [51] and HERWIG
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and rapidity di↵erence �y between the jets. Specifically, for 210 GeV < pT < 240 GeV
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form ↵
n
s ln

m
pT /Q0. It is interesting to perform systematic soft gluon resummations to
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The resummation of the leading logarithms has been studied in the papers [13, 53, 54].
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[52] using POWHEG [50] are lower than data, especially in the region of large jet pT

and rapidity di↵erence �y between the jets. Specifically, for 210 GeV < pT < 240 GeV
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average pT of the two hardest jets increases to 5
times or more of the veto scale Q0, the HEJ predic-
tion starts deviating from data, underestimating the
amount of radiation (i.e. the prediction for the gap
fraction is larger than the data). This behavior is
expected, since the component of events added with
naı̈ve tree-level matching increases with increasing
!pT . This component receives no systematic treat-
ment of soft resummation within HEJ, a situation
which would be improved by a complete matching
with a parton shower. Progress in this direction has
recently been made in Ref. [39].
The POWHEG description includes the effects of col-
linear emissions through the shower formulations,
and the theoretical predictions perform well for both
kinematic distributions in Fig. 1 (particularly when
using the PYTHIA shower). However, as can be seen
in the right plot, for larger rapidity spans and modest
!pT , the POWHEG description undershoots the data.
Indeed, POWHEG contains no systematic resumma-
tion of all the leading-logarithmic terms for large
"y. Overall, the study reported by ATLAS shows
best agreement with the predictions of POWHEGþ
PYTHIA, but all the studies involve a hierarchy of

transverse scales and, therefore, by construction,
will favor the description with the systematic col-
linear resummation of a parton shower.
Note that the results for POWHEGþ HERWIG are
consistently below the data (i.e. the events contain
too many jets). The differences between the results
from POWHEGþ PYTHIA and POWHEGþ HERWIG

should be considered as a theoretical uncertainty
connected to the different shower algorithm.

As a final comment, to cleanly separate the two drivers
of additional jet activity (a large ratio of transverse scales
and a large rapidity separation), it is obviously necessary to
use a selection criterion which does not automatically
generate a hierarchy in the transverse scales as the rapidity
span increases.

B. CMS results

CMS has reported a study [10] on dijet production
with just a simple selection criteria on the transverse
momenta of jets. Jets are reconstructed by using the
anti-kT algorithm with R ¼ 0:5 and are required to have
pT > 35 GeV. Events are then required to contain at least
one forward jet (3:2< j!fj<4:7) and at least one central
jet (j!cj< 2:8), where ! is the pseudorapidity of the jets.
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FIG. 1 (color online). Both plots from the ATLAS study [5] on the gap fraction, defined as the fraction of events with no additional
jets in the rapidity region between the tagging jets, as a function of the difference of the rapidity of the two jets. In the left-hand side
plot, the tagging jets are the most forward and most backward jets, while in the right-hand side plot, they are the two hardest jets in
each event. In both plots, !pT is the average transverse momentum of two tagging jets. All jets are required to have pT > 20 GeV and
absolute rapidity jyj< 4:4.
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Resummation
• Factorization formula to all order is unknown due to glauber gluons
• In LL and large Nc limit

• scale setting                 and
• focus on central jets, small gap & no collinear logs

the non-global e↵ects were included by reweighing with a K factor. The most detailed

theoretical study so far was [16], which resummed all large logarithms at LL in the large-

Nc limit by solving the BMS equation and also compared directly to the experimental

measurement. One limitation of this work is that the veto region was approximated by a

rectangle in the rapidity and azimuthal angle plane, see Figure 4. This made it possible to

obtain all NGLs by boosting the same solution of the BMS equation. In our computation

we will take into account the exact veto region used by ATLAS. Rather than relying on

the BMS equation, we will use our parton shower to resum all large logarithms.

Formula (2.1) was derived for leptonic collisions. The factorization formula for dijet

production at hadron colliders also includes PDFs fa(x, µ) and has the form

d�(Q0)

d�y d pT

=
X

a,b= q,q̄,g

Z
dx1dx2 fa(x1, µ)fb(x2, µ)

⇥
1X

m=2

⌦
H

ab

m({n}, ŝ, pT , µ) ⌦ Wm({n}, pT , Q0, µ)
↵

(4.5)

where ŝ = x1x2s is the partonic center-of-mass energy. The functions Wm({n}, pT , Q0, µ)

consist of a matrix element of the Wilson lines in the operator Sm+2 for the incoming and

outgoing partons, together with collinear fields of the two incoming ones. The functions

Wm contain rapidity logarithms due to Glauber gluon exchanges, which induce a depen-

dence on the large scale pT . This dependence has to be present in order to cancel the scale

dependence of the super-leading logarithms mentioned in Section 3. These double loga-

rithms of µ/pT arise from evolving the hard function and have a scale dependence which

cannot cancel against the single-logarithmic scale dependence of the purely soft matrix

element and the PDFs. We will discuss the factorization for the hadron-collider observable

in detail in a forthcoming paper. For the moment, we will concentrate on the leading

logarithms in the large-Nc limit, where these complications are absent and the resummed

cross section takes the simple form

d�(Q0)

d�y d pT

=
X

a,b= q,q̄,g

Z
dx1dx2fa(x1, µf )fb(x2, µf )H

ab

2 (ŝ,�y, pT , µh)hU2m(µs, µh)⌦̂1i .

(4.6)

The hard function H
ab

2
accounts for the process with two partons in the final state, and

all kinematics and color information is encoded in the hard events generated by Mad-

Graph5_aMC@NLO. The tree-level generator computes the exact color dependence of

the amplitudes, but to interface with a parton shower such as PYTHIA, it randomly as-

signs a possible large-Nc dipole color structure to each tree-level event. We use this color

information to start our shower, which then computes the evolution from 2 partons in the

final state to m partons, as encoded in the matrix elements U2m defined in (2.6). Since we

use full tree-level amplitudes, our hard function also contains terms of subleading color.

The paper [32] has modified MadGraph in such a way that the full color information

is written into the event file. Using this, one could perform a computation in the strict

large-Nc limit.
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Figure 5. The gap fraction as a function of the jet transverse momentum pT (left plot) and the
gap energy Q0 (right plot). The red line shows the LL result for the gap fraction; the error band is
obtained from scale variation. The ATLAS data is plotted in blue.

We choose µf = µh = pT as the central values for the factorization and hard scales,

and set the soft scale to be µs = Q0. A lower value of µf would enhance the gap fraction

and bring our results closer to the ATLAS measurements. However, the high value is

appropriate since the hard anomalous dimension has two parts, a soft contribution related

to non-global logarithms and a collinear part inducing the usual Altarelli-Parisi evolution.

In our shower, we only evolve with the soft part of the anomalous dimension and to avoid

the necessity for additional collinear evolution we have to to evaluate the PDFs at the high

scale.

In our calculations we use NNPDF23LO [44] PDF sets with ↵s(mZ) = 0.130 and use

one-loop running for ↵s. In Figure 5 we show the resummed gap fraction in comparison

with the ATLAS measurements [14]. In the left plot, we keep Q0 = 20GeV fixed and vary

the transverse momentum pT of the jets, while the right plot shows the gap fraction as a

function of Q0 for 210 GeV < pT < 240 GeV. ATLAS has performed measurements for

di↵erent rapidity separations between the jets. We want to avoid collinear enhancements

and focus on fairly central jets, since we do not resum collinear logarithms for the time

being. Specifically, we use 1 < �y < 2 in the left plot and 2 < �y < 3 in the right one.

To estimate the uncertainty of our predictions we vary the scales µh and µs by a factor of

two around their default values µh = pT and µs = Q0. The µs variation is larger, except

at low pT . In the plots we show the envelope of the two variations. We observe that the

results are marginally compatible with the experimental measurements within the fairly

large uncertainty bands, but it is clear that the theoretical description at LL accuracy is

fairly poor. This should be contrasted to the O(↵s) fixed-order result shown in orange

and the result obtained with PYTHIA [45] (solid green line) shown in Figure 6. We will

call the O(↵s) prediction leading order (LO), even though strictly speaking the leading-

order gap fraction is R(pT , Q0) = 1. Neither the fixed-order result nor PYTHIA describe

the ATLAS perfectly, but both yield a better description than the LL result. (In their

paper ATLAS uses POWHEG matched PYTHIA, which agrees with the data well for this
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Figure 4. Definition of gap region for dijet system in the rapidity and azimuthal plane. If any
jet radiating into the gray region with transverse momentum is larger than Q0, then this event is
vetoed. The two red dashed lines indicate the approximated cuts used in [13], which imposed the
veto only in the region between these two lines

in the recent paper [47] which presented a version of the BMS equation which allows for

their all-order resummation. It would be interesting to analyze this in our e↵ective field

theory framework. The corresponding e↵ective theory would involve boundary modes to

describe the emissions near the gap boundary. The problem is however challenging because

the gap fraction is suppressed by a power of �y in the limit �y ! 0.

4.2 Gaps between jets

We now perform the resummation for the gap fraction at the LHC, as measured by the

ATLAS experiment [48, 49]. The gap fraction is defined as the fraction of dijet events that

do not have an additional jet with transverse momentum greater than a given veto scale

Q0 in the rapidity interval bounded by the dijet system, and we will study it as a function

of pT , the average transverse momentum of the two leading jets. More explicitly, the gap

fraction is defined as the ratio of the cross sections with and without veto

R(pT , Q0) =
�2�jet(pT , Q0)

�2�jet(pT , Q0 = pT )
. (4.4)

Below, we will compute R(pT , Q0) for di↵erent gap sizes defined by the rapidity di↵erence

�y between the two leading jets. The precise geometry of the gap is shown in Figure 4.

The jets are reconstructed with the anti-kT jet algorithm with R = 0.6 and are required

to have rapidity |y| < 4.4.

The ATLAS paper [48] observed that MC predictions are not always consistent with

ATLAS data. For example the NLO predictions matched to PYTHIA [51] and HERWIG

[52] using POWHEG [50] are lower than data, especially in the region of large jet pT

and rapidity di↵erence �y between the jets. Specifically, for 210 GeV < pT < 240 GeV

and 4 < �y < 5, POWHEG+HERWIG underestimates the data by about 40%, and

POWHEG+PYTHIA by about 20%.

For small values of Q0, the gap fraction R(pT , Q0) involves large logarithms of the

form ↵
n
s ln

m
pT /Q0. It is interesting to perform systematic soft gluon resummations to

try to understand the di↵erence between theoretical prediction and experimental data.

The resummation of the leading logarithms has been studied in the papers [13, 53, 54].
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• Our results are consistent with theirs 
• Their method are based on BMS eq
• They use rectanglar veto region instead of 

exact one

Then, Fig. 5 demonstrates the dependence on the jet veto
threshold energy Eout. We note first that in our results the
veto fraction saturates to unity as the threshold Eout ap-
proaches the jet pT scale, as expected. In the data, it falls
short of unity because of the NLO (2 ! 3) corrections. On
the other hand, the agreement is best for the smaller values
of Eout, which is expected as well since the formalism we
use requires a large scale separation between the jet pT and
the threshold Eout.

Finally, it is worth mentioning that uncertainties in
the choice of the PDF set mostly cancel in the ratio (1).
We checked this by trying two different sets, MRST2002
[27] and CT10 [29], and found no noticeable difference.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated the QCD resumma-
tion of the Sudakov and the nonglobal logarithms induced
by soft gluon emissions in the context of the jet veto cross
section. We conclude that the ATLAS measurement is well
described by tree-level QCD supplemented with the jet
veto probability calculated perturbatively using the BMS
equation which resums both logarithms mentioned above.
Actually, the impact of the nonglobal logarithms is modest
compared to that of the Sudakov logarithms: with Eout as
large as 20 GeV, we estimate that the nonglobal contribu-
tion reduces the gap fraction by about 15%.

Having said this, we must comment on uncertainties
in our results other than the scale uncertainties already
examined. Above all, our description does not allow us
to disentangle between the two methods proposed by
ATLAS to identify the dijet system. While our approach
better reproduces the data where the most forward and the
most backward jets are selected, it is quite below the

measurement obtained by selecting the two hardest
jets in the event. This somewhat goes against the naive
expectation that our description should better reproduce
the latter situation. This probably means that effects other
than the ones included in the BMS equation are at play.
Still, we have shown that the resummation of the soft gluon
emissions gives a reasonable description of the jet veto
probability.
Various additional effects would play a role if we wanted

to improve our predictions. First, our approach resums the
soft gluon emissions at the leading-logarithmic accuracy,
so subleading effects would potentially be important.
(A rough estimate of this is shown by the yellow band in
the figures.) Then, we do not include 1=Nc corrections
neither in the Sudakov logarithms nor in the nonglobal
ones. The 1=Nc corrections in the Sudakov logarithms are
fully taken into account in Ref. [18], but those for the
nonglobal ones pose a serious theoretical challenge.
Also, the NLO (2 ! 3) corrections to the hard parton cross
sections can be important, especially at small !y and for
discriminating the two ATLAS data sets corresponding to
two different definitions of the dijet system. In principle,
our resummed approach can be extended to 2 ! 3 pro-
cesses, but the flow of color will be considerably more
complicated and it is not clear to us at the moment if such
an extension is practical. Alternatively, it may be more
practical to match the BMS predictions to the fixed-order
predictions from Sec. II which are expected to provide
more accurate NLO corrections at least in the small !y
region. Finally, we have seen that the data are well de-
scribed by the color octet contribution alone, without in-
troducing additional BFKL-like (singlet) contributions. As
already mentioned in the introduction, the ATLAS choice
Eout ! "QCD significantly reduces the sensitivity to BFKL
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FIG. 5 (color online). Comparison of the resummed veto fraction with the ATLAS measurement, for different kinematic bins, as a
function of the veto threshold Eout. See Fig. 3 for details.
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How to improve resummation predictions
• Hadronizaiton and underline events 

• Gap energy defined at jet level, reduce NP corrections

• Sub-leading color
• Super-Leading Log
• start at     , estimated to be small Forshaw, Keates & Marzani ‘09

• Power corrections
• one power correction from soft expansion of momentum conservation

• Higher log terms
• Collinear log resummation
• NLL (jet algorithm dependence)

↵4
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LO fixed order
LL at LO
modified LL at LO
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Figure 7. One emission at LL accuracy, compared to the full LO result. The modified LL shown
as a gray line is obtained by implementing momentum conservation for the soft emission.

result with good accuracy with a suitable modification of the parton luminosity. However,

their modification involved parameters which were chosen by hand. Parton showers such

as PYTHIA implement momentum conservation, so that these types of kinematic power

corrections are accounted for and their e↵ect was also studied in the recent paper [47]. It

is significant, but by itself not large enough to account for the di↵erence we observe. It

would be quite interesting to see whether one can modify our shower in such a way that

momentum conservation is fulfilled without modifying the leading power terms but we will

not pursue this issue further for the moment.

What can and certainly should be done is to extend the resummation to subleading

logarithmic accuracy. This will add the virtual corrections to H
ab

2 and the function H
ab

3

at the high scale, together with the O(↵s) corrections for all the soft functions at the

low scale. It will also require the two-loop anomalous dimension in the evolution to lower

scales. Computing these corrections and implementing them into a MC is of course a

major undertaking. To get a feeling for their size, one can first evaluate the NLL result at

O(↵s). One reason that the higher-log terms are significant is that we have not resummed

collinear logarithms for the moment, but with �y = 3, these are already of the same order

of magnitude as the soft logarithms. Using the results [1, 2] this can be done and we plan

to implement also the collinear resummation in the future.

4.3 Isolation cone cross sections and photon production

A second important class of non-global observables are cross sections with isolation cones

inside which only soft hadronic radiation is allowed. The most important example is photon

production, where an isolation cone is needed to separate the direct production of a photon

in the underlying hard collision from the photons which arise in hadron decays such as

⇡
0 ! ��. Imposing that Eiso, the hadronic energy inside the cone with half-opening angle

�0, is much smaller than the photon energy E� suppresses energetic photons originating

from decays of boosted hadrons. Similar cuts are also used to isolate leptons, for example

in SUSY searches. Imposing the isolation requirement induces logarithms ↵
n
s ln

n
✏� , with
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not defined as the total energy or transverse momentum inside the jet, but as the transverse

momentum of the leading jet inside the gap. This definition was chosen to reduce sensitiv-

ity to hadronisation and underlying event. Indeed, running PYTHIA at the partonic level

(dashed green line in Figure 6) yields quite similar results to the full simulation (solid green

line). We also doubt that subleading-color pieces can explain the di↵erence. Theoretically,

the finite-Nc corrections are especially interesting in our case because at subleading color,

one encounters double-logarithmic e↵ects, while the problem is only single logarithmic in

the large-Nc limit. However, since the double logarithmic e↵ects only arise at ↵
4
s, we do

not expect them to be very large. The numerical impact of the super-leading logarithms

was estimated to be small in [46], but one should resum them in order to properly asses

their importance.

This leaves (a) and (b) as explanations. The scale hierarchy in our computation is not

very large Q0/pT & 1/10, nevertheless, we expect the power corrections (b) to be moderate.

To test their size, we compare in Figure 7 the fixed order result at O(↵s) to the expansion

of the LL result to the same accuracy. We compute the LO fixed order result using the

relation

R(pT , Q0) = 1� 1

�
LO

2�jet
(pT )

Z
pT

Q0

dQ
0
0

d�
LO

3�jet
(pT , Q

0
0
)

dQ
0
0

. (4.7)

At LO, the integrand in (4.7) is obtained by computing the tree-level three-jet cross section

in which the third jet is inside the gap and has transverse momentum Q0. To see the power

corrections, it is interesting to take the logarithmic derivative of the gap fraction R(pT , Q0)

with respect to Q0. This removes any constant so that we directly see the di↵erence of the

leading-power log term to the full result. As it should be, the full LO result (orange line)

approaches the LL coe�cient (red line) for small Q0. At the same time the plot shows

that the LL derivative is completely o↵ at large Q0, where the derivative of the full LO

tends to zero. The fact that R becomes constant at large Q0 implies that power corrections

must cancel against the leading-power terms in this region. More generally, the unitarity

condition R(pT , Q0 = pT ) = 1 links power corrections (b) and higher-logarithmic terms

(a).

One type of power suppressed terms arises from expanding away the soft momenta

in the momentum-conservation �-functions. In our factorization theorem, the momenta in

the hard functions at the high scale are conserved, but the soft momenta are neglected.

Neglecting the soft momentum ks enhances the three-jet rate in (4.7) because the jets can

then be produced at the low partonic center-of-mass energy ŝ = (pJ1 + pJ1)
2 instead of the

correct value ŝ = (pJ1 + pJ1 + ks)2 at which the PDFs are smaller due to the suppression

of larger momentum fractions. To gauge the size of this e↵ect, we have used our MC to

compute dR/dQ0 for the first emission with the full ŝ. Since we know the kT = Q0 of

the emission as well as the direction, we can reconstruct the vector k and the associated

ŝ. In practice, we first boost to the partonic center-of-mass frame, correct ŝ and then

boost back. Doing so, we obtain the gray line in Figure 7. The modification due to

momentum conservation accounts for about half of the di↵erence between LL and the full

LO. A similar study was performed in [43] who found that they could reproduce the full LO
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(c) terms of subleading color, or (d) hadronisation and underlying event corrections. Let

us rule out the last possibility first. In the experimental measurement, the gap energy

Q0 is not defined as the total energy or transverse momentum inside the jet, but as the

transverse momentum of the leading jet inside the gap. This definition was chosen to

reduce sensitivity to hadronisation and underlying event. Indeed, running PYTHIA at

the partonic level (dashed green line in Figure 6) yields quite similar results to the full

simulation (solid green line). We also doubt that subleading-color pieces can explain the

di↵erence. Theoretically, the finite-Nc corrections are especially interesting in our case,

because at subleading color one encounters double-logarithmic e↵ects, while the problem is

only single logarithmic in the large-Nc limit. However, since the double logarithmic e↵ects

only arise at ↵
4
s, we do not expect them to be very large. The numerical impact of the

super-leading logarithms was estimated to be small in [49], but one should resum them in

order to properly asses their importance.

This leaves (a) and (b) as explanations. The scale hierarchy in our computation is not

very large Q0/pT & 1/10, nevertheless, we expect the power corrections (b) to be moderate.

To test their size, we compare in Figure 7 the fixed order result at O(↵s) to the expansion

of the LL result to the same accuracy. We compute the LO fixed order result using the

relation

R(pT , Q0) = 1� 1

�
LO

2�jet
(pT )

Z
pT

Q0

dQ
0
0

d�
LO

3�jet
(pT , Q

0
0
)

dQ
0
0

. (4.7)

At LO, the integrand in (4.7) is obtained by computing the tree-level three-jet cross section

in which the third jet is inside the gap and has transverse momentum Q0. To see the power

corrections, it is interesting to take the logarithmic derivative of the gap fraction R(pT , Q0)

with respect to Q0. This removes any constant so that we directly see the di↵erence of the

leading-power log term to the full result. As it should be, the full LO result (orange line)

approaches the LL coe�cient (red line) for small Q0. At the same time the plot shows

that the LL derivative is completely o↵ at large Q0, where the derivative of the full LO

tends to zero. The fact that R becomes constant at large Q0 implies that power corrections

must cancel against the leading-power terms in this region. More generally, the unitarity

condition R(pT , Q0 = pT ) = 1 links power corrections (b) and higher-logarithmic terms

(a).

One type of power suppressed terms arises from expanding away the soft momenta

in the momentum-conservation �-functions. In our factorization theorem, the momenta in

the hard functions at the high scale are conserved, but the soft momenta are neglected.

Neglecting the soft momentum ks enhances the three-jet rate in (4.7) because the jets can

then be produced at the low partonic center-of-mass energy ŝ = (pJ1 + pJ1)
2 instead of the
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• For non-global observables, we obtained a parton shower from 
effective field theory
• first-principles derivation of shower, based on RG evolution

• flexible implementation of shower using MG5_aMC@NLO

• To resum NLLs, one should include higher-order corrections to the 
anomalous dimension matrix and matching coefficients

• when the veto region is small, NGLs are enhanced due to dependence on 
the size of the veto region 

• (Finite Nc) + Glauber + non-global = super-leading log

• interesting to understand in EFT framework Rothstein & Stewart 

’16

Conclusion and outlook
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Figure 6. The gap fraction for di↵erent gap energies Q0 as measured by ATLAS (blue) compared
to the fixed-order result at LO (orange) and PYTHIA results (solid green: with hadronization
using Tune 7, dashed green: partonic result without hadronization and underlying event).

the ATLAS perfectly, but both yield a better description than the LL result. (In their

paper ATLAS uses POWHEG matched PYTHIA, which agrees with the data well for this

rapidity range, but starts deviating at higher rapidities.)

Before speculating about the source of the poor agreement of the LL result with the

measurement, it is interesting to compare to [16], which also computed the gap fraction

at LL accuracy and compared to the ATLAS data. Superficially, the results presented

in this paper show better agreement with data. The reason is two-fold. First of all, the

authors not only show the data of the measurement where the gap is defined by the two

most energetic jets, but also the experimental results for the case where the gap and pT is

defined by the two most forward and most backward jets. This second criterion leads to

lower gap fractions, which agree better with the LL resummed result, but – as the authors

of [16] readily admit – is not really appropriate to be compared against the theoretical

predictions. Choosing the two most forward and backward jets to define the gap implies

a veto on further radiation in the forward and backward direction, which is not imposed

in the theoretical computation. Using the highest-pT jets to define the dijet system, also

their gap fractions are below the measurements. They are somewhat higher than our results

because [16] approximates the gap by a rectangular region in the rapidity and azimuthal

angle, see Figure 4, so their veto region is smaller than the experimental gap by about one

unit of rapidity (the jet radius is R = 0.6), which increases their gap fraction and brings

it closer to data. Adopting their definition of the gap region, we find that our results are

consistent with their findings; the remaining small numerical di↵erences can be attributed

to the fact that they work in the strict large-Nc limit, while we include the full result for

the tree-level amplitudes.

Of course, our computation in the large-Nc, leading-logarithmic approximation is

rather crude. There are several sources of corrections which could push the results closer

to the experimental results. They are (a) higher-logarithmic terms, such as the constant

pieces of the one-loop hard and soft functions, (b) power corrections suppressed by Q0/pT ,
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Fixed order and MC results
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Figure 12. Numerical comparison between MC simulations and analytical calculations. The
histograms represent MC simulations with di↵erent collinear cuto↵s ⌘cut = 1 (black), 3 (red) and 5
(blue). The dots are from numerically integrating their analytical expressions.

where �t
00 = t � t

00. Compared to (B.8) we encounter additional factors V13/V3 and

V32/V3, which represent the probability of choosing one of the two dipoles. These factors

are implemented in Step (3) of the MC algorithm. No additional complications arise at

higher multiplicities.

In order to check our MC simulation step by step, we can calculateHm directly from its

definition, and then compare with simulation results. We show the results for H3 and H4

in Figure 12. The histograms represent the simulation results while the dots are calculated

directly. For simplicity we set the veto region to zero which means that we do not veto any

radiation. We write the collinear cuto↵ in the form �
2 = 1� tanh ⌘cut and choose di↵erent

values of ⌘cut. We observe excellent agreement between the numerical integration and the

simulation results. As a second consistency check we have verified the unitarity of the

shower, i.e. we ran the full shower with the veto region to zero and checked �veto(t) = �0

within the numerical accuracy.

We will also compare our simulation algorithm to the one used by Dasgupta and Salam

[3]. As mentioned in Appendix A, they impose the collinear cuto↵ in the COM rather than

the lab frame. Furthermore, instead of computing the cross section directly, they formulate

a shower for the derivative d�veto/dt. This form can be derived from the di↵erential form

(3.6) of the RG equation. Specifically, we have
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Dasgupta-Salam shower from EFT


