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SCET has allowed for some of the most precise resummation
results available today, but each observable takes lots of time

Big advantage of SCET is separation at Lagrangian level

e o resum, need following:

1. Factorization for observable

2. Fixed order computations of factorization ingredients

3. Solving RG equations

Each of the three steps depends on the observable
and needs to repeated

Can this be done in a way where the observable dependence
can be computed numerically?



For a simple observable we know the factorization theorem
and can easily obtain an analytical solution
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For a simple observable we know the factorization theorem
and can easily obtain an analytical solution

Consider the factorization the thrust cumulant

One can define a “max version” of thrust (taking max of thrust for each
emission), which has a multiplicative factorization theorem

This multiplicative version knows nothing about details of observable,
only about the singular behavior of a single emission



For a simple observable we know the factorization theorem
and can easily obtain an analytical solution

Consider the factorization the thrust cumulant

Resum logs by evolving jet and soft functions from their
characteristic scales ps=QT, py=QVT1 to uH=Q
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For a simple observable we know the factorization theorem
and can easily obtain an analytical solution

Consider the factorization the thrust cumulant

This uses the anomalous dimensions for the soft and jet functions
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The resummation of large logarithms for the “max”
observable is much simpler

Factorization for 2max multiplicative
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RG equations are multiplicative
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The resummation of large logarithms for the “max”
observable is much simpler

Factorization for 2max multiplicative

RG equations are multiplicative

S (r3) = { =2 emplan (] 10 "5 = 25fan] b S, (i)

7_2 Q2

B3 ) = { omplae ()] 1 =2 = 2rslan] | £3%(ri

Resummation is just product of exponentials
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One can express the more complicated observable Z(v) in
term of simpler observable Zax(Vv)
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Combining the two, we can write
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Can transfer function be computed numerically?



While transfer function is IR finite, there are still UV
divergences in SCET we need to deal with

Individual transfer functions contains UV divergences
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While transfer function is IR finite, there are still UV
divergences in SCET we need to deal with

Individual transfer functions contains UV divergences

To compute numerically, need to regulate these real UV divergences
by means other than dim-reg

10



While transfer function is IR finite, there are still UV
divergences in SCET we need to deal with

Individual transfer functions contains UV divergences

To compute numerically, need to regulate these real UV divergences
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This gives SCET with two UV regulators (just like SCET,, with
rapidity regulator).

With new regulator, soft and jet functions become (in Laplace)
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This gives SCET with two UV regulators (just like SCET,, with
rapidity regulator).

With new regulator, soft and jet functions become (in Laplace)
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This gives SCET with two UV regulators (just like SCET,, with
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This gives SCET with two UV regulators (just like SCET,, with
rapidity regulator).

With new regulator, soft and jet functions become (in Laplace)
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Note that jet function is single logarithmic
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The transfer function can be computed numerically by

literally summing all possible diagrams Banfi, Salam, Zanderighi ('04)
Banfi, McAslan, Monni, Zanderighi ("14)

Np(0T,u) Yp(TR, 1)
DRAX(T, ) XBA(OT, 1)

-FF(TFJUM) —
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The transfer function can be computed numerically by

literally summing all possible diagrams Banfi, Salam, Zanderighi ('04)
Banfi, McAslan, Monni, Zanderighi ("14)

Xt (0T,p) Xp(TR, p)
DRAX(T, ) XBA(OT, 1)

FF(TFﬂ',M) —

1) To compute transfer function at NkLL, need ingredients at Nx1LL
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1) To compute transfer function at NkLL, need ingredients at Nx1LL

Double logarithmic structure same for 2 and 2max, one power of log
cancels
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The transfer function can be computed numerically by

literally summing all possible diagrams Banfi, Salam, Zanderighi ('04)
Banfi, McAslan, Monni, Zanderighi ("14)

Xp(0T,p) Ep(re, p)
Zmax( M) Er};lax(é‘T’ ,U)

FF(TF,T,M)

1) To compute transfer function at NkLL, need ingredients at Nx1LL

2) Jet function is single logarithmic, does not contribute at NLL

FY (7, 7,Q) = O[r, > 0]
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The transfer function can be computed numerically by

literally summing all possible diagrams Banfi, Salam, Zanderighi ('04)
Banfi, McAslan, Monni, Zanderighi ("14)
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1) To compute transfer function at NkLL, need ingredients at Nx1LL
2) Jet function is single logarithmic, does not contribute at NLL

3) Soft function can be written as sum over all possible diagrams

Ss(Te i) = > (kY Y5|0)PO(Vioge < 7))
k)

:VSZ

(Mg (ki,... k)2 0(Vs(ki,.. k) < Ts)

H / |dk;]

Can we simplity this if only needed to LL?
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The transfer function can be computed numerically by

literally summing all possible diagrams Banfi, Salam, Zanderighi ('04)
Banfi, McAslan, Monni, Zanderighi ("14)

To LL accuracy, only need emissions in the strongly ordered limit
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The transfer function can be computed numerically by

literally summing all possible diagrams Banfi, Salam, Zanderighi ('04)
Banfi, McAslan, Monni, Zanderighi ("14)
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The transfer function can be computed numerically by
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The transfer function can be computed numerically by

literally summing all possible diagrams Banfi, Salam, Zanderighi ('04)
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. Startwithi=0and to=T
. Increase 1 by one

. Generate 1i randomly according to (Ti-1/Ti)"R(® =r, with r € [0,1]

. If Ti < OT exit algorithm, otherwise go back to step 2

Accepteventif 2iTi<T
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This finally allows to obtain the resummation at NLL order

MC/Analytic
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Putting all information together, one finds

EVH(T) = Bmax (1) Fg (1,7, Q)

Monte Carlo

Analytic
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This approach opens door for resummation for a large class of
observables

While | have only discussed NLL, can be extended to higher
logarithmic accuracy

1. Find simplified observable for class of observables
2. Compute analytical resummation to given order

3. Run generic numerical algorithm to compute
resummation for any observable in given class
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