
SCETLIB.

Frank Tackmann

Deutsches Elektronen-Synchrotron

SCET 2018 Workshop
Amsterdam, March 21, 2018

Main developers:
Markus Ebert, Johannes Michel, FT

Frank Tackmann (DESY) SCETLIB. 2018-03-21 0 / 10



So.

We have worked out our factorization theorem ... X

We have calculated our matching, anomalous dimensions, ... X

Now we actually want to get some numbers out ...
Numerical implementation often time-consuming and nontrivial

I Mathematica is very expedient for playing, exploring, quick’n’easy plotting,
testing profiles, ...

I But it is also very slow and hard to maintain, scale, share, interface

Eventually, we might also want others (theorists and experimentalists alike) to
be able to use our results ...

Nontrivial effort is required to go from a working code we can use
ourselves to a code our collaborators can use
Nontrivial effort is required to go from a code our collaborators can use to
a code everyone can use

Frank Tackmann (DESY) SCETLIB. 2018-03-21 1 / 10



So.

We have worked out our factorization theorem ... X

We have calculated our matching, anomalous dimensions, ... X

Now we actually want to get some numbers out ...
Numerical implementation often time-consuming and nontrivial

I Mathematica is very expedient for playing, exploring, quick’n’easy plotting,
testing profiles, ...

I But it is also very slow and hard to maintain, scale, share, interface

Eventually, we might also want others (theorists and experimentalists alike) to
be able to use our results ...

Nontrivial effort is required to go from a working code we can use
ourselves to a code our collaborators can use
Nontrivial effort is required to go from a code our collaborators can use to
a code everyone can use

Frank Tackmann (DESY) SCETLIB. 2018-03-21 1 / 10



So.

We have worked out our factorization theorem ... X

We have calculated our matching, anomalous dimensions, ... X

Now we actually want to get some numbers out ...
Numerical implementation often time-consuming and nontrivial

I Mathematica is very expedient for playing, exploring, quick’n’easy plotting,
testing profiles, ...

I But it is also very slow and hard to maintain, scale, share, interface

Eventually, we might also want others (theorists and experimentalists alike) to
be able to use our results ...

Nontrivial effort is required to go from a working code we can use
ourselves to a code our collaborators can use
Nontrivial effort is required to go from a code our collaborators can use to
a code everyone can use

Frank Tackmann (DESY) SCETLIB. 2018-03-21 1 / 10



So.

We have worked out our factorization theorem ... X

We have calculated our matching, anomalous dimensions, ... X

Now we actually want to get some numbers out ...
Numerical implementation often time-consuming and nontrivial

I Mathematica is very expedient for playing, exploring, quick’n’easy plotting,
testing profiles, ...

I But it is also very slow and hard to maintain, scale, share, interface

Eventually, we might also want others (theorists and experimentalists alike) to
be able to use our results ...

Nontrivial effort is required to go from a working code we can use
ourselves to a code our collaborators can use
Nontrivial effort is required to go from a code our collaborators can use to
a code everyone can use

Frank Tackmann (DESY) SCETLIB. 2018-03-21 1 / 10



Design and Philosophy.

In contrast to existing resummation codes, SCETLIB is meant and designed
as a library (mostly written in C++)

Not only a black box to (re)produce an existing result but also a toolbox to
build new results

I Barrier of adoption for new result is significantly lowered when available in
an already familiar format/framework

Main design goals
User-friendly

I Intuitive (physics-driven) and powerful library interface (API) for toolbox users
I Ease of use for end (blackbox) users
I Safety against unintentional or accidental misuse for either

Modular design
I Reuse and rely on existing, validated, well-tested components
I Infrastructure to assemble building blocks
I Allow for flexibility, extendability, scaleability

Stability and speed

Frank Tackmann (DESY) SCETLIB. 2018-03-21 2 / 10



Overview of SCETLIB.

core and support modules

beamfunc

core (math, orders, evolution, αs, ...)

hardfunc ...

Frank Tackmann (DESY) SCETLIB. 2018-03-21 3 / 10



Overview of SCETLIB.

core and support modules

beamfunc

core (math, orders, evolution, αs, ...)

hardfunc ...

physics modules

TN pjet
T ... ...

Frank Tackmann (DESY) SCETLIB. 2018-03-21 3 / 10



Overview of SCETLIB.

core and support modules

beamfunc

core (math, orders, evolution, αs, ...)

hardfunc ...

CL interface test suite Mma interface

user interfaces

physics modules

TN pjet
T ... ...

docum
entation

build
system

Frank Tackmann (DESY) SCETLIB. 2018-03-21 3 / 10



Factorization as Design Principle.

“Factorization” is one of the core design principles in C++ (and in general)

Break up problem into smaller pieces
I Each piece does one thing and does it well
I Complexity is achieved through their interactions

For us, it means that the logical (i.e. physics) factorization is directly
reflected in the code

Example:

Structure of TN module

σ(Q, Y, τ ) =

H(Q)

× [B(QeY )⊗B(Qe−Y )

⊗ S](τ )
Sigma_singular

SingularHard

usesuses

uses uses

Soft_2to0

Beam

Frank Tackmann (DESY) SCETLIB. 2018-03-21 4 / 10



Example: Interface of TauN::Singular.
class Singular
{

public:
using Phi = Phi_label_2to0;
using Color = Soft_2to0::Color;

// constructor
Singular(Color color, Resum_order order, RunningCoupling<>& alphas, ...);

// Returns distribution-valued perturbative series.
JointDistribution operator()(Phi phi, Scales scales) const;

// Evaluate the spectrum at Tau.
auto spectrum(Phi phi, double Tau, Scales scales) const;

// Evaluate the cumulant up to TauCut.
auto cumulant(Phi phi, double TauCut, Scales scales) const;

private:
Resum_order _order; // resummation order
RunningCoupling<>& _alphas; // running coupling
Beam _beam; // beam functions
Soft_2to0 _soft; // soft function

};

Frank Tackmann (DESY) SCETLIB. 2018-03-21 5 / 10



Example: Implementation of TauN::Singular.

// constructor
Singular::Singular(Color color, Resum_order order,

RunningCoupling<>& alphas, ...)
: _order(order), _alphas(alphas),
_beam(color == qqbar ? Beam::quark : Beam::gluon, order, alphas, ...),
_soft(color, order, alphas)

{}

// _beam and _soft return distribution-valued perturbative series
// including RG evolution.
// Their multiplication operator* evaluates their convolution.
JointDistribution Singular::operator()(Phi phi, Scales scales) const
{

return _beam(phi.channel.fa, phi.wa, scales.muBa, scales.mu)
* _beam(phi.channel.fb, phi.wb, scales.muBb, scales.mu)
* _soft(scales.muS, scales.mu);

}

// Evaluate the spectrum at Tau.
auto spectrum(Phi phi, double Tau, Scales scales) const
{

return (*this)(phi, scales).spectrum(Tau);
}

Frank Tackmann (DESY) SCETLIB. 2018-03-21 6 / 10



Beam Function Module.

Facilities for beam function coefficients and convolutions
∫
dz

z
Iij(z) fj

(x
z

)
Flexible: Different ways to provide convolutions
(via fast grid interpolation and/or on-the-fly integration)

Extendable: Easy to add new kernels (or other provider strategies)

provides ...

Iqq

Integrator

provides provides

uses

Interpolator

PDF

MellinConv

Kernel

Pqq

needs

needs

uses

LHAPDF

provides
GridMakerGrid

makes

uses

needs

ConvProvider

Beam

Frank Tackmann (DESY) SCETLIB. 2018-03-21 7 / 10



Mathematica Interface.
Mathematica is convenient for plotting etc., but interfacing it to external C++
code can be excruciating (if you ever tried, you know what I mean ...)

SCETLIB’s Mathematica interface provides access to its functionality from
Mathematica in a few easy steps

Write a simple class that exposes the desired functionality

Run the MmaInterface, which automatically
I Parses the class definitions
I Generates source code for a Wolfram LibraryLink library and builds it
I Generate a corresponding Mma package to use the LibraryLink library
I Can also export multiple classes in one package

In Mathematica
I Load the package
I Create objects of the exported class(es), where each object can have its

own settings and multiple objects can coexist
I Call their exported member functions
I Errors (exceptions) in the C++ code are caught and passed through as Mma

warnings

//MMA_EXPORT_CLASS//
class DrellYan
{

public:
//MMA_EXPORT//
DrellYan(...) { ... } // setup the _sigma

//MMA_EXPORT//
double spectrumResummedQY(double Q, double Y, double Tau,

complex muH, double muB, double muS)
{

return _sigma.spectrum(Phi{Q, Y}, Tau, muH, Scales{muB, muS, Q});
}

private:
Sigma_singular<hardfunc::DrellYan> _sigma;

}
Frank Tackmann (DESY) SCETLIB. 2018-03-21 8 / 10



Mathematica Interface.
Mathematica is convenient for plotting etc., but interfacing it to external C++
code can be excruciating (if you ever tried, you know what I mean ...)

SCETLIB’s Mathematica interface provides access to its functionality from
Mathematica in a few easy steps

Write a simple class that exposes the desired functionality

Run the MmaInterface, which automatically
I Parses the class definitions
I Generates source code for a Wolfram LibraryLink library and builds it
I Generate a corresponding Mma package to use the LibraryLink library
I Can also export multiple classes in one package

In Mathematica
I Load the package
I Create objects of the exported class(es), where each object can have its

own settings and multiple objects can coexist
I Call their exported member functions
I Errors (exceptions) in the C++ code are caught and passed through as Mma

warnings

//MMA_EXPORT_CLASS//
class DrellYan
{

public:
//MMA_EXPORT//
DrellYan(...) { ... } // setup the _sigma

//MMA_EXPORT//
double spectrumResummedQY(double Q, double Y, double Tau,

complex muH, double muB, double muS)
{

return _sigma.spectrum(Phi{Q, Y}, Tau, muH, Scales{muB, muS, Q});
}

private:
Sigma_singular<hardfunc::DrellYan> _sigma;

}

Frank Tackmann (DESY) SCETLIB. 2018-03-21 8 / 10



→ Live Demo ...

Frank Tackmann (DESY) SCETLIB. 2018-03-21 8 / 10



Nontrivial Example: Double-differential T0 − qT .
[→ see Gillian’s talk for the physics details]

σI(T0, qT ) = H ×B(T0, qT )2 ⊗ S(T0)

= B(T0) + ∆B(T0, qT )

σ+(T0, qT ) = H ×B(qT )2 ⊗ S(T0, qT )2 ⊗ S(T0)

σII(T0, qT ) = H ×B(qT )2 ⊗ S(T0, qT )

= S(qT ) + ∆S(T0, qT )

Hard

needsuses

Singular

Sigma_singular

provides

usesuses usesuses usesuses

Singular_SCET1 Singular_SCETp Singular_SCET2

providesprovides

DeltaBeam TauN::Beam TauN::Soft CSoft

qT::Beam qT::Soft

DeltaSoft

uses

Frank Tackmann (DESY) SCETLIB. 2018-03-21 9 / 10



Summary and Outlook.
SCETLIB strives to be an easy-to-use, powerful, multi-purpose library

Significantly reduce effort to numerically implement new calculations
Rely on tested and validated implementations of existing ingredients
Make results available to the experimental and theoretical community

⇒ Get more easily
from here

−→

to here

 [
p

b
/G

e
V

]
j1 T

p
/d

σ
d

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
 4l→ ZZ* →H 

Combined

γγ →H 

LO) + XH
3

NNLOPS (@N

SCETlib (STWZ) + XH

XH = VBF+WH+ZH+ttH+bbH

ATLAS Preliminary
γγ → ZZ, H →H 

­1
13 TeV, 36.1 fb

 [GeV]j1

T
p

0 30 55 75 120 350

T
h
e
o
ry

/D
a
ta

0.4
0.6
0.8

1
1.2
1.4
1.6

Frank Tackmann (DESY) SCETLIB. 2018-03-21 10 / 10



Summary and Outlook.
SCETLIB strives to be an easy-to-use, powerful, multi-purpose library

Significantly reduce effort to numerically implement new calculations
Rely on tested and validated implementations of existing ingredients
Make results available to the experimental and theoretical community

⇒ Get more easily

Outlook

Current v0.4: Not-yet public
I Could only show you some of the features

Next v0.5: Will be public
I If interested, watch this space: http://scetlib.desy.de

I or tell me to add you to the scetlib-announce@desy.de email list

Frank Tackmann (DESY) SCETLIB. 2018-03-21 10 / 10

http://scetlib.desy.de

