SCETLIB

Frank Tackmann

Deutsches Elektronen-Synchrotron

SCET 2018 Workshop
Amsterdam, March 21, 2018

Main developers:
Markus Ebert, Johannes Michel, FT

Frank Tackmann (DESY) SCETLIB 2018-03-21 0/10

We have worked out our factorization theorem ... v*

Frank Tackmann (DESY) SCETLIB 2018-03-21 1/10

We have worked out our factorization theorem ... v*

We have calculated our matching, anomalous dimensions, ... v

Frank Tackmann (DESY) SCETLIB 2018-03-21 1/10

We have worked out our factorization theorem ... v
We have calculated our matching, anomalous dimensions, ... v

Now we actually want to get some numbers out ...
@ Numerical implementation often time-consuming and nontrivial

» Mathematica is very expedient for playing, exploring, quick’'n’easy plotting,
testing profiles, ...

» Butitis also very slow and hard to maintain, scale, share, interface

Frank Tackmann (DESY) SCETLIB 2018-03-21 1/10

We have worked out our factorization theorem ... v
We have calculated our matching, anomalous dimensions, ... v

Now we actually want to get some numbers out ...
@ Numerical implementation often time-consuming and nontrivial

» Mathematica is very expedient for playing, exploring, quick’'n’easy plotting,
testing profiles, ...

» Butitis also very slow and hard to maintain, scale, share, interface

Eventually, we might also want others (theorists and experimentalists alike) to
be able to use our results ...

@ Nontrivial effort is required to go from a working code we can use
ourselves to a code our collaborators can use

@ Nontrivial effort is required to go from a code our collaborators can use to
a code everyone can use

Frank Tackmann (DESY) SCETLIB 2018-03-21 1/10

Design and Philosophy

In contrast to existing resummation codes, SCETLIB is meant and designed
as a library (mostly written in C++)

@ Not only a black box to (re)produce an existing result but also a toolbox to
build new results

» Barrier of adoption for new result is significantly lowered when available in
an already familiar format/framework
Main design goals
@ User-friendly

> Intuitive (physics-driven) and powerful library interface (API) for toolbox users
» Ease of use for end (blackbox) users
» Safety against unintentional or accidental misuse for either

@ Modular design

» Reuse and rely on existing, validated, well-tested components
» Infrastructure to assemble building blocks
> Allow for flexibility, extendability, scaleability

@ Stability and speed

Frank Tackmann (DESY) SCETLIB 2018-03-21 2/10

Overview of SCETLIB

core and support modules

core (math, orders, evolution, as, ...)

Frank Tackmann (DESY) SCETLIB 2018-03-21 3/10

Overview of SCETLIB

core and support modules

core (math, orders, evolution, as, ...)

physics modules

Frank Tackmann (DESY) SCETLIB 2018-03-21 3/10

Overview of SCETLIB

core and support modules

core (math, orders, evolution, as, ...)

beamfunc hardfunc

physics modules

T~ Pt

user interfaces

CL interface test suite Mma interface

Frank Tackmann (DESY) SCETLIB 2018-03-21 3/10

Factorization as Design Principle

“Factorization” is one of the core design principles in C++ (and in general)
@ Break up problem into smaller pieces

» Each piece does one thing and does it well
» Complexity is achieved through their interactions

@ For us, it means that the logical (i.e. physics) factorization is directly
reflected in the code

o Example: | Beam | [Soft_2to0 |
Structure of 7 module Uses uses
e [ward |

Hard Singular
H(Q)
X [B(Qey) ® B(Qe_Y) uses uses
® S](r)

| Sigma_singular |

Frank Tackmann (DESY) SCETLIB 2018-03-21 4/10

Example: Interface of TauN: : Singular

class Singular
{
public:
using Phi = Phi_label 2to0;
using Color = Soft_2to0::Color;

// constructor
Singular (Color color, Resum_order order, RunningCoupling<>& alphas,

// Returns distribution-valued perturbative series.
JointDistribution operator () (Phi phi, Scales scales) const;

// Evaluate the spectrum at Tau.
auto spectrum(Phi phi, double Tau, Scales scales) const;

// Evaluate the cumulant up to TauCut.
auto cumulant (Phi phi, double TauCut, Scales scales) const;

private:
Resum_order _order; // resummation order
RunningCoupling<>& _alphas; // running coupling
Beam _beam; // beam functions
Soft_2to0 _soft; // soft function

}i

Frank Tackmann (DESY) SCETLIB 2018-03-21 5/10

Example: Implementation of TauN: : Singular

// constructor
Singular: :Singular (Color color, Resum order order,

RunningCoupling<>& alphas, ...)
_order (order), _alphas(alphas),
_beam(color == ggbar ? Beam::quark : Beam::gluon, order, alphas, ...)

_soft (color, order, alphas)

{1

// _beam and _soft return distribution-valued perturbative series
// including RG evolution.
// Their multiplication operator* evaluates their convolution.
JointDistribution Singular: :operator () (Phi phi, Scales scales) const
{
return _beam(phi.channel.fa, phi.wa, scales.muBa, scales.mu)
* _beam(phi.channel.fb, phi.wb, scales.muBb, scales.mu)
* _soft (scales.muS, scales.mu);

}

// Evaluate the spectrum at Tau.
auto spectrum(Phi phi, double Tau, Scales scales) const
{

return (xthis) (phi, scales) .spectrum(Tau);

Frank Tackmann (DESY) SCETLIB 2018-03-21 6/10

Beam Function Module
.) o . dz x
Facilities for beam function coefficients and convolutions | — I;;(z) f; <7>
z z

@ Flexible: Different ways to provide convolutions
(via fast grid interpolation and/or on-the-fly integration)

@ Extendable: Easy to add new kernels (or other provider strategies)

makes .
Grid GridMaker provides
PDF LHAPDF
uses uses heeds
Interpolator Integrator uses MellinConv
‘////// Pqq
provide&‘ ‘onides needs
Kernel Iqq
ConvProvider
A prm
needs
Beam

Frank Tackmann (DESY) SCETLIB 2018-03-21 7/10

Mathematica Interface

Mathematica is convenient for plotting etc., but interfacing it to external C++
code can be excruciating (if you ever tried, you know what | mean ...)

SCETLIB’s Mathematica interface provides access to its functionality from
Mathematica in a few easy steps

@ Write a simple class that exposes the desired functionality

//MMA_EXPORT_CLASS//
class DrellYan

{

public:
//MMA_EXPORT//
DrellYan(...) { ... } // setup the _sigma

//MMA_EXPORT//
double spectrumResummedQY (double Q, double Y, double Tau,
complex muH, double muB, double muS)

{

return _sigma.spectrum(Phi{Q, Y}, Tau, muH, Scales{muB, muS, Q});

}

private:
Sigma_singular<hardfunc::DrellYan> _sigma;

Frank Tackmann (DESY) SCETLIB 2018-03-21 8/10

Mathematica Interface

Mathematica is convenient for plotting etc., but interfacing it to external C++
code can be excruciating (if you ever tried, you know what | mean ...)

SCETLIB’s Mathematica interface provides access to its functionality from
Mathematica in a few easy steps

@ Write a simple class that exposes the desired functionality

@ Run the Mmalnterface, which automatically
» Parses the class definitions
» Generates source code for a Wolfram LibraryLink library and builds it
» Generate a corresponding Mma package to use the LibraryLink library
» Can also export multiple classes in one package

@ In Mathematica
» Load the package
» Create objects of the exported class(es), where each object can have its
own settings and multiple objects can coexist
» Call their exported member functions
> Errors (exceptions) in the C++ code are caught and passed through as Mma
warnings

Frank Tackmann (DESY) SCETLIB 2018-03-21 8/10

— Live Demo

Frank Tackmann (DESY) SCETLIB 2018-03-21 8/10

Nontrivial Example: Double-differential 7o — qr

[— see Gillian’s talk for the physics details]
o1(To,ar) = H X B(To,qr)* ® S(7T0)
= B(To) + AB(7o, gr)
o+ (To,qr) = H X B(qr)*> ® S(To,91)* ® S(7o)

o1(To,qr) = H x B(gr)* ® S(7o, qr)
= S(qr) + AS(To,qr)

|DeltaBeam| |TauN::Beam| |TauN::So:ft| |qT :Beam |qT :Soft | |De1taSoft|

A
\JSGS uses / uses uses / \ses uses /USGS

| Singular_ SCET1 | | Singular_ SCETp | Slngular SCET2 |

providN provides AA)wdes
A

Hard Singular

1

uses needs

| Sigma_singular |

Frank Tackmann (DESY) SCETLIB 2018-03-21 9/10

Summary and Outlook

SCETLIB strives to be an easy-to-use, powerful, multi-purpose library
@ Significantly reduce effort to numerically implement new calculations
@ Rely on tested and validated implementations of existing ingredients
@ Make results available to the experimental and theoretical community
= Get more easily

from here to here

ao(pF™) 3 E ‘ - ¥ Wozzoa | El
8 185 ATLAS Preliminary + Combines E
= opHgg(me,mu, i) /dYBg m, pP, R, Ta, 115, VE) a 1.6 H-2ZZ H et boHow =
P 2 1O 137ev, 36.1 1b° siaii NNLOPS (@N'LO) + XH B
X By(mp.pP. R.xy. 15, vB) Sgq (03", R, pis. vs) 1.4 SCETIib (STWZ) + XH E
cut ° E W XH = VBF+WH:ZHxtiHboH |
x Uo(p7", Ri i, i, s, VB, Vs) 5 12 -
O R) 4 o (05 R i) (56) 1 \ 5 5
where the combined renormalization group evolution fac- 0'8;7 7;
tor Up is given by 0.6 4 E
Uo(v™, B . i s v, vs) 045 H | E
T 02 e 4y, =
= |exp — vt (m 1) E PP
M = w =
1B 4, © 14l i
e [) g N |]

s M s MEEy e s l 1
v § os ! 1 | 1 T
X exp[ln—'y PF". R, ug)} (57) £ 06 |
0.4 —

0 30 55 75 120 350

1
»1GeV]

Frank Tackmann (DESY) SCETLIB 2018-03-21 10/10

Summary and Outlook

SCETLIB strives to be an easy-to-use, powerful, multi-purpose library
@ Significantly reduce effort to numerically implement new calculations
@ Rely on tested and validated implementations of existing ingredients
@ Make results available to the experimental and theoretical community

Outlook
@ Current v0.4: Not-yet public

» Could only show you some of the features

@ Next v0.5: Will be public
> If interested, watch this space: http://scetlib.desy.de

> or tell me to add you to the scetlib-announce@desy.de email list

Frank Tackmann (DESY) SCETLIB 2018-03-21 10/10

http://scetlib.desy.de

