Color unwound

- Glauber gluons and factorization in azimuthal asymmetries in Drell-Yan

Tomas Kasemets JGU Mainz

D. Boer, T. van Daal, J.R. Gaunt, TK, P.J. Mulders; arXiv:1709.04935

Color unwound

- Glauber gluons and factoriz asymmetries in Dre

Color unwound

- Glauber gluons and factoriz asymmetries in Dre

D. Boer, T. van Daal, J.R. Gaunt, TK, P.J. M

The What and the Why?

- Contradiction: CSS factorization vs color entanglement for Boer-Mulders (BM) function in Drell-Yan (DY)
- Color entanglement suggested by Buffing and Mulders in DY for double T-odd contributions in low transverse momentum region

- Polarization gives loop hole in the general proof?
- How far does the process dependence of BM function go?
- Important for experimental efforts
- Better understand factorization (violation) and Glauber gluons
- Factorization violation due to Glauber gluons. When and where?
- Asymmetries useful in isolating Glauber contribution (as we shall see)

Drell-Yan with measured q_{T}

- Cross section $d \sigma\left(p p \rightarrow Z / \gamma^{*} \rightarrow l \bar{l}\right)$:
- Hard interaction

$$
q\left(k_{1}\right) \bar{q}\left(k_{2}\right) \rightarrow Z / \gamma^{*}(q) \rightarrow l \bar{l}
$$

- Hadronic correlators
- Transverse momentum dependent PDFs (TMDs)

- Factorization theorem:

$$
\frac{d \sigma}{d x_{1} d x_{2} d^{2} q_{T}}=H \times\left[f_{i}\left(x_{1}, k_{1 T}\right) \otimes f_{j}\left(x_{2}, k_{2 T}\right)\right]+\mathcal{O}\left(q_{T}^{2} / Q^{2}\right)
$$

Transverse momentum dependent PDFs - long distance

- Rigorously proven for Drell-Yan

Factorization and relevant modes

- Take possible Feynman graphs for DY production
- Identify leading-power infrared regions of the diagrams
- Pinched-singular-surfaces - classically allowed processes
- Power counting analysis: does integration in neighborhood give leading contribution?
- Leading regions $\left(\lambda \sim\left|q_{T}\right| / Q\right): \ell \sim(+,-, \perp)$
- hard (H) $\ell \sim(1,1,1) Q$
- right-moving collinear $(\mathrm{C} 1) ~ \ell \sim\left(1, \lambda^{2}, \lambda\right) Q$
- left-moving collinear $(\mathrm{C} 2) \quad \ell \sim\left(\lambda^{2}, 1, \lambda\right) Q$
- (central) soft $\ell \sim(\lambda, \lambda, \lambda) Q$
- Glauber $\left|\ell^{+} \ell^{-}\right| \ll \ell_{T}^{2} \ll Q^{2}$

Factorization for Drell-Yan

- Glauber scalings
- right-moving Glauber (G1) $\quad \ell \sim\left(\lambda, \lambda^{2}, \lambda\right) Q$
- left-moving Glauber (G2) $\quad \ell \sim\left(\lambda^{2}, \lambda, \lambda\right) Q$
- central Glauber (G) $\quad \ell \sim\left(\lambda^{2}, \lambda^{2}, \lambda\right) Q$
- Regions and subtractions of a graph Γ
- Contribution from region $\mathrm{R} C_{R} \Gamma=T_{R} \Gamma-\sum_{R^{\prime}<R} T_{R} C_{R^{\prime}} \Gamma$
- Adding all regions $\Gamma=\sum_{R} C_{R} T_{R}$
- Eikonal approximation
- Propagator denominator $\frac{1}{\left(p_{1}+l\right)^{2}+i \epsilon} \approx \frac{1}{2 p \cdot l+i \epsilon}$
- Ward identities
- Remove soft attachments from collinear subgraphs, after sum over attachments

Factorization for Drell-Yan

- Similarly: unphysical polarized collinear attachments into hard subgraph
- No Glaubers = Factorization

- soft, collinear and hard
- Glauber gluons \Rightarrow No Eikonal approximation
- Final state poles cancel = only initial state poles.
- Deform \Rightarrow Eikonalize
- Deform back to real axis
- Glaubers cancelled and/or absorbed

$$
\frac{d \sigma}{d p_{T}} \sim \mathrm{H} \times(\mathrm{C} 1 \otimes \mathrm{~S} \otimes \mathrm{C} 2)
$$

- Absorb soft: $\frac{d \sigma}{d p_{T}} \sim \operatorname{Hard} \times(\mathrm{TMD} \otimes \mathrm{TMD})$ TMD $\sim($ Matching coeff. \otimes PDF) \times Non-pert.

Glaubers violating factorizatinn

Fig. from Gaunt, 2014

- Factorization violation (Glauber gluons):
- MPI sensitive obse (event shapes in h

QCD

- TMD factorizatior
- super-leading logs

Senior Factorization Breaker

Glauber Gluon

Hadron Collider Street 1
Geneva, Switzerland

- Strict collinear factormzauron

2014; Schwartz, Yan, Zhu. 2018
Mulders, Rogers, 2014
orshaw, Kyrieleis, Seymour, 2006
Catani, de Florian, Rodrigo, 2012
Buffing, Mulders, 2013

- color entanglement in Drell-Yan?
- Off-shell scaling (cannot be integrated out as soft and collinear modes in SCET)
- Included in SCET through potential insertions Rothstein, Stewart, 2016
- Most difficult part of deriving factorization

Fig. from Mulders, Rogers, 2014

Glaubers violating factorizatinn

- Factorization violation (Glauber gluons):
- MPI sensitive observables (event shapes in hadron collisions)

Gaunt, 2014; Schwartz, Yan, Zhu. 2018

- TMD factorization for $\mathrm{h} 1+\mathrm{h} 2 \longrightarrow \mathrm{~h} 3+\mathrm{h} 4$

Mulders, Rogers, 2014

- super-leading logs
- Strict collinear factorization
- color entanglement in Drell-Yan?
- Off-shell scaling (cannot be integrated out as soft and collinear modes in SCET)
- Included in SCET through potential insertions Rothstein, Stewart, 2016
- Most difficult part of deriving factorization

Fig. from Mulders, Rogers, 2014

Color factors for double Boer-Mulders effect

- Factorization theorem closer look:

Boer, Brodsky, Huang, 2003;
Boer, 1999

- Azimuthal asymmetry = Double Boer-Mulders effect (dBM)
- Correlation: lepton decay plane \leftrightarrow vector boson $\boldsymbol{q}_{\boldsymbol{T}}$
- Contradicting color factor of dBM effect
- CSS factorization: $C_{\text {ent. }}=1$
- Color entanglement: $C_{\text {ent. }}=-\frac{1}{N_{c}^{2}-1}$
- Color entangled type of diagram:
- First order giving a non-zero dBM effect $\operatorname{Tr}\left\{t^{a} t^{b} t^{a} t^{b}\right\} \neq \operatorname{Tr}\left\{t^{a} t^{a}\right\} \operatorname{Tr}\left\{t^{b} t^{b}\right\}$

Boer-Mulders function

- TMD for transversely polarized quark in unpolarized proton

$$
\begin{aligned}
& \left.\frac{\widetilde{k}_{1 T}^{j}}{M} h_{1, q}^{\perp}\left(x_{1}, \boldsymbol{k}_{1}^{2}\right) \equiv \int \frac{d \xi^{-} d^{2} \boldsymbol{\xi}}{(2 \pi)^{3}} e^{i k_{1} \cdot \xi}\left\langle p_{1}\right| \bar{\psi}_{q}(0) W_{[0, \xi]} \Gamma_{T}^{j} \psi_{q}(\xi)\left|p_{1}\right\rangle\right|_{\xi^{+}=0} \\
& \quad+\quad+(\text { part of }) \text { Soft function - will not be relevant } \\
& \text { Boer, Mulders } 1997 \\
& \Gamma_{T}^{j} \equiv \frac{1}{2} i \sigma^{j+} \gamma^{5}
\end{aligned}
$$

- Function is T-odd
- TMDs can be process dependent (in a calculable way)
- BM function changes sign between SIDIS and DY

Model calculation to test factorization

- Essential features of QCD necessary for color entangled result
- Simple enough to calculate explicitly
- Spectator model, proton couple to
- spin-1/2 quark (color triplet)
- scalar spectator (color anti-triplet)
- QCD corrections: gluons couple to quarks and scalars via standard (fermion and scalar) QCD Feynman rules
- Obeys physical principles, such as unitarity

Model calculation to test factorization

- Essential features of QCD necessary for color entangled result
- Simple enough to calculate explicitly
- Spectator model, proton couple to
- spin-1/2 quark (color triplet)
- scalar spectator (color anti-triplet)
- QCD corrections: gluons couple to quarks and scalars via standard (fermion and scalar) QCD Feynman rules
- Obeys physical principles, such as unitarity

Single gluon exchange

- dBM effect should be zero as this order, lets check:
- Non-zero graph has gluon exchange between the two scalar spectators
- Must have central Glauber scaling for leading power contribution
- Two places to put the final state cut

- Sum over these two cuts gives zero (Cutkosky)

$i\left[\mathcal{M}(i \rightarrow f)-\mathcal{M}^{*}(f \rightarrow i)\right]=-\sum_{\text {int. cuts }} \int d \Phi_{X} \mathcal{M}(i \rightarrow X) \mathcal{M}^{*}(f \rightarrow X)$
- Physical reason: unitarity

Two gluon exchange

- Most relevant regions AB (scaling of $l_{1} l_{2}$):
- Regions and Collins subtractions
- with explicit Glauber region!
- Sizes of regions:
- $\mathrm{G}_{1} \mathrm{G}_{2}$ point, GC_{2} and $\mathrm{C}_{1} \mathrm{G}$ line, $\mathrm{C}_{1} \mathrm{C}_{2}$ surface
- Calculate each region and subtract overlap (similar to zero-bin)

$$
\begin{aligned}
C_{G_{1} G_{2}} \Gamma & =T_{G_{1} G_{2}} \Gamma, \\
C_{C_{1} G} \Gamma & =T_{C_{1} G}\left(1-T_{G_{1} G_{2}}\right) \Gamma, \\
C_{C_{1} C_{2}} \Gamma & =T_{C_{1} C_{2}}\left(1-T_{C_{1} G}-T_{G C_{2}}\right)\left(1-T_{G_{1} G_{2}}\right) \Gamma .
\end{aligned}
$$

- Rapidity regulator (compare SCET II)
- Regulator inspired by η regulator (CMU regulator)

$$
\left|\frac{\ell_{1}^{+}}{\nu}\right|^{-\eta_{1}}\left|\frac{\ell_{2}^{-}}{\nu}\right|^{-\eta_{2}} \text { careful with order of limits }
$$

$\mathrm{G}_{1} \mathrm{G}_{2}$ region

- Most interesting diagrams:

$$
\begin{aligned}
& \ell_{1} \sim\left(\lambda, \lambda^{2}, \lambda\right) Q \\
& \ell_{2} \sim\left(\lambda^{2}, \lambda, \lambda\right) Q
\end{aligned}
$$

- Cross section contribution:

$$
d \sigma_{\mathrm{dBM}} \sim C_{(\mathrm{a})}\left[I_{(\mathrm{a})}-N_{c}^{2}\left(I_{(\mathrm{b})}+I_{(\mathrm{c})}\right)\right]
$$

- Integrals over larger (λ scaled) gluon momentum light cone components
- $I_{(\mathrm{a})} \equiv \int \frac{d \ell_{1}^{+}}{2 \pi} \frac{\nu^{\eta_{1}}\left|\ell_{1}^{+}\right|^{-\eta_{1}}}{\ell_{1}^{+}+i \epsilon} \int \frac{d \ell_{2}^{-}}{2 \pi} \frac{\nu^{\eta_{2}}\left|\ell_{2}^{-}\right|^{-\eta_{2}}}{\ell_{2}^{-}+i \epsilon}$
- only initial state poles

Final state pole cancellation

$$
\begin{gathered}
I_{(\mathrm{b})} \equiv \int \frac{d \ell_{1}^{+}}{2 \pi} \frac{\nu^{\eta_{1}}\left|\ell_{1}^{+}\right|^{-\eta_{1}}}{\ell_{1}^{+}+i \epsilon} \int \frac{d \ell_{2}^{-}}{2 \pi} \frac{2 \ell_{1}^{+} \nu^{\eta_{2}}\left|\ell_{2}^{-}\right|^{-\eta_{2}}}{2 \ell_{1}^{+} \ell_{2}^{-}-\left(\ell_{1 T}+\ell_{2 T}\right)^{2}+i \epsilon} \\
I_{(\mathrm{c})} \equiv 4 \pi i \int \frac{d \ell_{1}^{+}}{2 \pi} \frac{\nu^{\eta_{1}}\left|\ell_{1}^{+}\right|^{-\eta_{1}}}{\ell_{1}^{+}+i \epsilon} \int \frac{d \ell_{2}^{-}}{2 \pi} \theta\left(-\ell_{1}^{+}\right) \ell_{1}^{+} \delta\left[2 \ell_{1}^{+} \ell_{2}^{-}-\left(\ell_{1 T}+\ell_{2 T}\right)^{2}\right] \nu^{\eta_{2}}\left|\ell_{2}^{-}\right|^{-\eta_{2}} \\
2 \pi i \delta(x)=\frac{1}{x-i \epsilon}-\frac{1}{x+i \epsilon}
\end{gathered}
$$

- initial and final state poles
- Sum over cuts cancel the final state poles

$$
I_{(\mathrm{b})}+I_{(\mathrm{c})}=-\frac{i}{2} \int \frac{d \ell_{1}^{+}}{2 \pi} \frac{\nu^{\eta_{1}}\left|\ell_{1}^{+}\right|^{-\eta_{1}}}{\ell_{1}^{+}+i \epsilon}+\mathcal{O}\left(\eta_{2}\right)=I_{(\mathrm{a})}
$$

- Result agree with factorization theorem

$$
d \sigma_{\mathrm{dBM}} \sim C_{(\mathrm{a})}\left[I_{(\mathrm{a})}-N_{c}^{2}\left(I_{(\mathrm{b})}+I_{(\mathrm{c})}\right)\right]=\frac{1}{N_{c}} C_{\Phi}^{2} I_{(\mathrm{a})}
$$

$\mathrm{GC}_{2}, \mathrm{C}_{1} \mathrm{G}$ and $\mathrm{C}_{1} \mathrm{C}_{2}$ region

- GC_{2} and $\mathrm{C}_{1} \mathrm{G}$ separately disentangle (can fix one of l_{1}^{+}and l_{2}^{-})
- $\mathrm{C}_{1} \mathrm{C}_{2}$: Calculate contribution with approximations of collinear gluons

$$
C_{C_{1} C_{2}} \Gamma=T_{C_{1} C_{2}}\left(1-T_{C_{1} G}-T_{G C_{2}}\right)\left(1-T_{G_{1} G_{2}}\right) \Gamma .
$$

- Only need fixed values of l_{1}^{+}and l_{2}^{-}.
- Subtractions remove regions where they go to zero
- Can ignore the i-epsilon in the denominators
- Leads directly to a color disentangled result
- Adding non-entangled diagrams, get zero for the $\mathrm{C}_{1} \mathrm{C}_{2}, \mathrm{GC}_{2}$ and $\mathrm{C}_{1} \mathrm{G}$
- Implies that collinear result in Glauber region is equal to Glauber contribution
- Glaubers can be absorbed in the collinear
- But, the i-epsilons of Collinear result then matters!

Rapidity regulator dependence

- Different regulators for different diagram
- Diagrams depends on choice of rapidity regulator
- example: the triple gluon $\left(\mathrm{G}_{1}-\mathrm{G}_{2}-\mathrm{S}\right)$ vertex diagram
- Our default choice, $\left|\ell_{1}^{+} / \nu\right|^{-\eta_{1}}\left|\ell_{2}^{-} / \nu\right|^{-\eta_{2}}$ with $\eta_{1} \gg \eta_{2}$ (avoid that η_{2}) after integration over
 l_{2}^{-}anti-regulates the l_{1}^{+}integral.
- Theta functions (from Collinear region) gives same result after sum over cuts

$$
\theta\left[\min \left(k_{1}^{+}, p_{1}^{+}-k_{1}^{+}\right)-\left|l_{1}^{+}\right|\right], \theta\left[\min \left(k_{2}^{-}, p_{2}^{-}-k_{2}^{-}\right)-\left|l_{2}^{-}\right|\right]
$$

- Using instead $\left|\left(l_{1}^{+}-l_{2}^{-}\right) / \nu\right|^{-\eta}$, triple gluon vertex diagram vanishes in $\mathrm{G}_{1} \mathrm{G}_{2}$ region.
- Colors disentangle between momentum regions.

Boer-Mulders function = a Glauber function?

- At this order, full contribution from Glauber region

$$
C_{G_{1}} \Gamma+C_{C_{1}} \Gamma=T_{G_{1}} \Gamma+T_{C_{1}}\left(1-T_{G_{1}}\right) \Gamma=T_{G_{1}} \Gamma
$$

- Boer-Mulders function:
$\frac{\widetilde{k}_{1 T}^{j}}{M} h_{1}^{\perp}\left(x_{1}, \boldsymbol{k}_{1}^{2}\right)=-2 i C_{\Phi}\left(1-x_{1}\right) p_{1}^{+} \chi^{j}\left(x_{1}, \boldsymbol{k}_{1}\right) \int \frac{d \ell_{1}^{+}}{2 \pi} \frac{\nu^{\eta_{1}}\left|\ell_{1}^{+}\right|^{-\eta_{1}}}{\ell_{1}^{+}+i \epsilon}+$ h.c.
- Color factor

$$
C_{\Phi}=C_{A} C_{F}=\frac{N_{c}^{2}-1}{2}
$$

- Initial state Wilson line

- Sign change for SIDIS (final state Wilson line)

Calculation summary

- Colors disentangle separately in each region
- $\mathrm{G}_{1} \mathrm{G}_{2}, \mathrm{C}_{1} \mathrm{G}, \mathrm{GC}_{2}, \mathrm{C}_{1} \mathrm{C}_{2}$
- Adding non-entangled diagrams, the result reproduces the factorization theorem at this order
- Contribution to dBM entirely from Glauber region
- Underlying reason: after sum over cuts of diagrams one component of each gluon loop momentum (l_{1}^{+}and l_{2}^{-}) not trapped in Glauber region and can be deformed into the collinear regions.
- Glaubers absorbed in other region consistent with factorization
- Note: Not possible to deform to make absorption into soft region. Not even after summing over diagrams and cuts.
- CSS/SCET factorization does not specify which region absorbs which type of Glaubers - interesting to examine further

Glaubers and (spin) asymmetries

- Reduce complexity, move effects to lower orders
- Remember: higher orders does not mean small effect (small scale)
- Double unpolarized contribution:
- More diagrams contributing
- Contributions already at lower orders
- Color entanglement between diagrams (a)-(c) in the $\mathrm{G}_{1} \mathrm{G}_{2}$ region proceeds the same way as for the polarized example
- BM: Given by Glauber region at $\mathcal{O}\left(\alpha_{s}\right)$
- Unpolarized TMD: imaginary Glauber contribution cancel at $\mathcal{O}\left(\alpha_{s}\right)$ non-zero at $\mathcal{O}\left(\alpha_{s}^{2}\right)$

Conclusions

- Colors disentangle for azimuthal asymmetries in Drell-Yan
- Factorization formula exactly recovered
- Unitarity to cancel the final-state poles after sum over cuts on a graph
- Non-Abelian Ward identity to give the predicted color factor
- Surviving Glauber contribution can be absorbed by collinear and soft
- Glauber gluons absorbed in
- Transverse momentum dependent PDFs/Beam functions
- Soft and Collinear Wilson lines
- Interesting to examine further when and where Glauber regions are absorbed by collinear and soft functions
- Better understand when, where and how much Glauber gluons violate factorization

