

"Quirks" at the LHC

Jack Setford

University of Sussex

with S. Knapen, H.K. Lou and M. Papucci, LBNL Berkeley and UC Berkeley.

Talk outline

- ■What?
- □ MµÀ ṡ
- □How;

Talk outline

- ■What are quirks?
- ■Why should we care?
- □How do we find them?

What are quirks?

- Sort of like quarks, but not quite.
- Charged under an unbroken non-Abelian gauge force which confines at low energies.
- Unlike QCD, the confinement scale is significantly less than the mass of the lightest quirk.

$$\Lambda \ll m_Q$$

No bound states, no hadronisation.

What are quirks?

Kang, J and Luty, M. arXiv:0805.4642 (2008)

Why should we care?

- Quirk-like particles are generic predictions of models such as twin Higgs and folded supersymmetry.
- □ In both cases, the particle that cuts off the top loop is charged under a copy of $SU(3)_c$.

Poorly covered by LHC searches

- \blacksquare For $m_Q \gtrsim 100~{\rm GeV}$ and $1000~{\rm eV} \lesssim \Lambda \lesssim 10~{\rm keV}$, oscillation length is of order the size of the detector.
- Anomalous tracks are not picked up by track reconstruction algorithms – which look for circular/helical tracks.
- Quirk events would currently show up as missing energy + jets - current constraints not very good.

How do we find them?

Key observation – hits lie in a plane.

Angle drift

Plane-finding algorithm

Optimal plane minimises mean-squared distance between candidate points and the plane.

$$d^2 = \mathbf{p}^T \mathbf{T} \mathbf{p}$$
 $\mathbf{T}(\mathbf{x}_a) \equiv \frac{1}{N-1} \sum_{a=1}^{N} \mathbf{x}_a \mathbf{x}_a^T$

- $lue{}$ Smallest eigenvalue ΔT roughly gives the thickness of the plane.
- Which hits to take as candidate points?
- \Box $\mathcal{O}(1000)$ hits due to pileup.

Plane-finding algorithm

- \Box Start with outer two layers, collect pairs of hits with $\Delta\phi<0.1$ and $\Delta z<2~{\rm cm}$.
- Each pair of pairs is a candidate, keep only those which approximately lie in a plane $(\Delta T < 0.05 \text{ cm})$.
- Work iteratively back through the layers, adding hits to the list if they are close enough to the candidate plane.
- Register a signal if at least one plane is reconstructed, and passes further cuts.

Plane-finding algorithm

Results

Coloured quirks

$(3,1)_{\frac{3}{2}}, \ N_Q = 2 \text{ Quirks}$ 20000 Exclusion 15000 Discovery 10000 5000 10^{2} \log 10^{1} HSCP $\sqrt{s} = 13 \text{ TeV}, \int Ldt = 300 \text{ fb}^ 10^{0}$ 1000 1500 2000 2500 500 $m_Q \, (\mathrm{GeV})$

Electroweak quirks

Conclusions

- Quirk-like states are predictions of many models.
- Strange 'quirky' tracks are currently not reconstructed by LHC detectors.
- We propose a search strategy that covers a broad range of quirk masses and confinement scales.
- Search for hits than lie on a plane.

Thanks for listening!