The Future of Particle Cosmology (after LHC Run II)

Hooman Davoudiasl

HET Group, Brookhaven National Laboratory

NExT PhD Workshop 2017, Abingdon, UK June 26-29, 2017

Lecture 3: Dark Matter and Particle Physics

95% of Cosmos: unknown!

Cosmic acceleration (dark energy): Could be vacuum energy; no dynamics

Dark matter (DM)

- $\Omega_{\text{DM}} \sim$ 0.27, fraction of critical energy density
- Robust evidence from cosmology and astrophysics
- CMB, BBN, rotation curves of galaxies, lensing, Bullet Cluster, . . .

Unknown origin

- Feeble interactions with atoms, light
- Self-interactions not strong ($\sigma \lesssim 1$ barn)
- \bullet Local energy density $ho_{\rm DM} \sim 0.3$ GeV cm $^{-3}$
- Not explained in SM

Strongly motivates new physics

So far, evidence limited to gravity effects

How do you look for something of unknown nature?

Possible DM mass scale: $10^{-22}~eV \lesssim M_{\rm DM} \lesssim 10^{68}~eV$

(Spanning ultra light bosons to primordial black holes: \sim 90 orders of magnitude!)

Searches often guided by theoretical motivation

- New physics to address unresolved questions in SM
 - Strong CP problem (QCD)
 - CP violating effects highly suppressed in QCD by ${ar heta} \lesssim 10^{-9}$
 - The hierarchy problem in SM:
 - Quantum corrections to Higgs potential comparable to UV scales
 - Why is $M_H \sim 10^2$ GeV small compared to e.g. $M_{\rm Planck} \sim 10^{19}$ GeV?
- SM extensions often introduce/require new symmetries
- Symmetry → Charge conservation
- ⇒ Stable or long-lived particles: DM candidates

Some well-known extensions of SM:

- Strong CP
- Peccei-Quinn (PQ) symmetry, broken at $f_{\text{PQ}} \gg M_W$
- Light **axion** (pseudo-Goldstone boson), m_a from non-perturbative QCD
- Couplings suppressed by $1/f_{PQ}$
- QCD axions could be dark matter for $m_a \sim \mu {\rm eV}$; $f_{\rm PQ} \sim 10^{12} {\rm ~GeV}$
- Hierarchy
- New weak scale physics $(M_{\text{new}} \gtrsim M_H)$: supersymmetry, strong dynamics, . . .
- Often requires an unbroken parity (e.g. R-parity in SUSY) to avoid problems
- Lightest parity-odd particle stable
- Weakly Interacting Massive Particles (WIMPS)

Quick Review of QCD Axion

- QCD: $\theta G_{\mu\nu} \tilde{G}^{\mu\nu}$ allowed by all good symmetries
- Strong CP problem: Why is $\bar{\theta} = \theta + \arg[\det(M_q)] \lesssim 10^{-10}$ neutron EDM: $d_n < 0.30 \times 10^{-25}$ e cm (90% CL), PDG2016
- If $\exists m_q = 0 \ (q = u)$ can rotate θ away
- Disfavored by phenomenology, lattice
- ullet Assume a U(1) anomalous under $SU(3)_c$ Peccei and Quinn, 1977
- ullet Broken U(1): massless Goldstone, <u>axion a</u>, decay constant f_a Wilczek, 1978; Weinberg, 1978
- QCD anomaly: $m_a \neq 0$ from non-perturbative instanton effects
- Potential $V_a \sim m_u \Lambda_{\text{QD}}^3 \left(1 \cos \frac{a}{f_a}\right) \Rightarrow m_a^2 \sim m_u \Lambda_{\text{QCD}}^3 / f_a^2$
- ullet Dynamical relaxation of $ar{ heta} o 0$

- Astrophysics (emission from stars, supernovae, . . .): $f_a \gtrsim 10^8$ GeV
- Axion: oscillating field for $m_a(T) \gtrsim 3H(T)$ (CDM behavior)
- ullet Assume $a/f_a\lesssim 1$: axion potential approximated by the m_a^2 term
- Axion equation of motion: $\ddot{a} + 3H(t) a + m_a^2(t) = 0$ m_a temperature (time) dependent
- For $H=\dot{R}/R$, $\dot{m}_a/m\ll m_a$: $a(t)\approx A(t)\cos(m_at)$, where $d(m_aA^2)/dt=-3H(m_aA^2)\Rightarrow n_a=\frac{1}{2}m_aA^2\propto R^{-3}$ (CDM)

 Preskill, Wise, Wilczek, 1983; Abbot, Sikivie, 1983; Dine, Fischler, 1983
- $\Omega_a \propto f_a^{1.18} (A_i/f_a)^2$ with A_i initial amplitude
- Cosmology yields upper bound $f_a \lesssim 10^{12}$ GeV (overclosure)
- ullet Bound assumes initial amplitude $A_i \sim f_a$
- ullet For $f_a\sim 10^{12}$ GeV axions could be good DM candidates $f_a o M_{GUT}$ requires $\mathcal{O}(10^{-3})$ or better tuning of A_i^2

- Axion DM search using a microwave cavity with background *B*-field Haloscope concept: Sikivie, 1983
- Axion-photon coupling: $g_{a\gamma\gamma} \, a \, \vec{E} \cdot \vec{B}$ $g_{a\gamma\gamma} \sim (\alpha/\pi)/f_{PQ}$

G. Rybka [ADMX Collaboration], Phys. Dark Univ. 4, 14 (2014)

WIMPs

- Thermal relic density: annihilation, freeze-out
- Annihilation rate below Hubble scale $H \sim g_*^{1/2} T^2/M_{\rm Planck}$

-
$$g \sim g_{\text{Weak}}$$
, $M \sim \text{TeV} \Rightarrow \Omega_{\text{DM}} \sim \mathcal{O}(0.1)$
$$\Omega_{\text{CDM}} \equiv \frac{\rho_{\text{CDM}}}{\rho_{\text{crit}}} = 0.258(11) \quad \text{(From PDG2016)}$$

- ullet Weak scale (\sim TeV) theoretically motivated
- Motivation diminished if no new physics at LHC
- However, g^4/M^2 may be achieved otherwise (WIMPless Miracle) Feng and Kumar, 2008
- WIMPs: the main focus of DM searches
- DAMA/LIBRA, CDMS, Xenon10, CDMSII, Xenon100, LUX, Fermi GST...

Thermal Relic Density See, e.g., HD, Lewis, 1309.6640

- Annihilation cross section: $\sigma_{ann} v_{rel} = a + b v_{rel}^2$
- a (b) dominant: s (p)-wave
- Thermal average: $\langle \sigma_{ann} v_{rel} \rangle = a + 6b/x$ with $x \equiv m_{dm}/T$
- In general: $\langle \sigma_{\text{ann}} v_{\text{rel}} \rangle = \sum_{j} a_{j} x^{-j}$
- Relic density:

$$\Omega h^2 = \frac{5.36 \times 10^{43} \text{cm}^3 \text{ GeV } s(0)}{M_{\text{Planck}}^3 g_{*s} / \sqrt{g_*}} \frac{x_f}{\sum_j a_j x_f^{-j} / (j+1)}$$

H(0) = 100 km/s Mpc h (Hubble constant today), entropy density s(0) = 2889.2 1/cm³, $g_* \approx g_{*s}$ relativistic degrees of freedom, and x_f is value of x at freeze-out

 $x_f \approx \ln[0.038(\kappa/\sqrt{x_f g_*})M_{\text{Planck}} m_{\text{dm}} \langle \sigma_{\text{ann}} v_{\text{rel}} \rangle]$ κ : DM internal degrees of freedom

Direct WIMP DM Searches

- Recoil off atomic nuclei (electrons)
- Energy deposition (ionization, scintillation, ...)
- Motion of Sun within Galaxy: WIMP wind
- Earth's motion: seasonal modulation (DAMA/LIBRA)

E. Aprile et al., arXiv:1705.06655 [astro-ph.CO] (green, yellow: 1,2 σ limits, 90% C.L.)

 \bullet General feature: $m_{
m DM}\lesssim$ few GeV poorly constrained (low recoil energy)

Other avenues for WIMP search:

- Indirect searches: self-annihilation signals
- Related to thermal relic density
- Complicated by astrophysical backgrounds

- Collider production: LHC
- Search for missing energy in events

Plots and diagram from CMS Collaboration, 1701.02042

- Z + missing p_T search mode
- Limits based on a "simplified model"

Plots and diagram from ATLAS Collaboration, 1704.03848

- ullet γ + missing p_T search mode
- Limits based on a "simplified model"

Observation motivating DM theory

- Similar energy density of atoms and DM:
- $\Omega_{DM}pprox 5\Omega_{B}$. Planck, 2015

Why would two unrelated sectors have similar Ω ?

- Empirical motivation for common origin
- DM from an asymmetry: Kaplan, Luty, Zurek, 0901.4117

For reviews see, for example, HD, Mohapatra, 1203.1247; Petraki, Volkas, 1305.4939; Zurek, 1308.0338

$$n_B \approx n_{DM} \Rightarrow m_{DM} \approx 5m_p$$

- ullet Like baryons, DM and $\overline{\sf DM}$ annihilate efficiently, leaving asymmetry
- Can lead to different search strategies
- One does not typically expect annihilation indirect signals for ADM

Hylogenesis H.D., Morrissey, Sigurdson, Tulin, Phys.Rev.Lett. 105 (2010) 211304

Greek: hyle "matter" + genesis "origin"

- Generalized global B for both visible and hidden sectors
- Out-of-equilibrium, CP-violating decays of X_1 , \bar{X}_1 into
- (1) SM (quarks); (2) dark matter (Y, Φ) : $X = X_1, X_2$

$$-\mathscr{L}\supset rac{\lambda}{M^2}(X_L^\dagger s_R)(u_R d_R) + \zeta\,XY\Phi + H.C.$$

- CPT: $\Delta B(SM) = -\Delta B(DM)$; $m_{Y,\Phi} \sim 2\text{-3 GeV}$
- Matter stability: symmetry and kinematics
- Baryons (Quarks) and Anti-baryons (DM) can annihilate:

Induced Nucleon Decay (IND) \Rightarrow New approach to DM detection

Induced Nucleon Decay

• $YN \to \Phi^*M$ and $\Phi N \to \bar{Y}M$ (M a meson)

• Mimics standard $N \to M\nu$, but with different kinematics.

Decay mode	$p_M^{\sf SND}$ (MeV)	p_M^{IND} (MeV)
$N \to \pi$	460	800 - 1400
$N \to K$	340	680 - 1360
$N o \eta$	310	650 - 1340

 p_M monochromatic, negligible broadening from halo velocity.

- χ PT estimate: $au_N pprox 10^{32} \, {
 m yr} imes \left(rac{\Lambda_{IND}}{1 \, {
 m TeV}}
 ight)^6 \left(rac{0.3 \, {
 m GeV/cm}^3}{
 ho_{DM}}
 ight)$
- Current bound on $p o K^+ \bar{\nu}$: $au_p > 5.9 imes 10^{33}$ yr Super-Kamiokande Collaboration, 2014
- ★ Bound may not apply to IND due to different meson kinematics:

Less likely to be stopped, more Čerenkov radiation, boosted decay products.

Alternatives to CDM

- ullet CDM simulations: predictions unsuccessful on scales $\lesssim 10~{
 m kpc}$
- Too much small scale structure: missing satellites,...
- Cusp (simulations) versus core (observations) for DM profile
- It is possible that more details need to be included
- Effect of baryons on the DM density near galactic centers
- Self-interacting DM For a review, see Tulin and Yu, 1705.02358
- A new paradigm?
- We will briefly discuss an alternative scenario

- An alternative possibility: Fuzzy DM (FDM) Barkana, Gruzinov, 2000
- ullet An ultra light axion of mass $m_a \sim 10^{-22}$ eV
- ullet de Broglie wavelength $\sim 1~{
 m kpc}$
- Can be thought of as coherent wave
- Quantum mechanics: FDM cores of ~ 1 kpc (solitons)
- Avoids problems of the CDM at small scales
- Axion potential $\mu^4 \cos(a/f_a) \Rightarrow m_a \sim \mu^2/f_a$
- QCD axion not a motivated option: $\mu \sim \Lambda_{\rm QCD} \to f_a \gg 10^{19} \ {
 m GeV}$
- However, FDM may descend from string scale dynamics

Hui, Ostriker, Tremaine, Witten, 2016

- ullet Decay constant $f_a \sim 10^{16-18}$ GeV ; $\mu \lesssim 1$ keV
- \bullet Mass generation from stringy instantons: $\mu^{\rm 4} \sim M_{\rm Pl}^2 M_{\rm UV}^2 e^{-S}$
- $M_{\rm UV} \sim M_{\rm SUSY}$ - $M_{\rm Pl} \rightarrow S \sim 2\pi/\alpha_G \sim 100$ -200

Summary

- DM may be motivated by solutions to other SM problems
- Models requiring new weak scale states (hierarchy problem) could naturally lead to thermal relics, WIMPs
- No new physics at LHC (and null direct detection results) can make the typical weak scale WIMPs less motivated
- Thermal relics may still be DM, but perhaps at lower masses with feeble couplings to SM

Different frameworks may also be invoked: asymmetric DM, ultra light bosons,...

- This is a challenging regime for conventional direct detection, collider searches
- New experiments may provide access to this sector, as we will outline in the next lecture