Part 3

WIMPs are not the only viable DM candidates

WIMPs are not the only viable DM candidates

FIMPS (Feebly interacting MP)

- Freeze-in (Hall et al 0911.1120, McDonald,j. hep-ph/0106249) relevant for FIMP
- In early Universe, χ so feebly interacting that χ is decoupled from plasma

• Interactions are feeble but lead to production of χ

Freeze-in

- DM particles are NOT in thermal equilibrium with SM
- Recall

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left((n_{\chi})^2 - (n_{\chi}^{eq})^2 \right)$$

Depletion of χ due to annihilation

Creation of χ from inverse process

Freeze-in

DM particles are NOT in thermal equilibrium with SM

Recall

Depletion of χ due to annihilation

Creation of χ from inverse process

Initial number of DM particles is very small

$$\dot{n}_\chi + 3Hn_\chi = \langle \sigma v \rangle_{X\bar{X} \to \chi\bar{\chi}}(T) n_{eq}^2(T) + n_{eq}(T) \Gamma_{Y \to \chi\chi}(T)$$
 annihilation
$$\begin{array}{c} \text{Decay} \\ \text{(X,Y in Th.eq. With SM)} \end{array}$$

FIMPS (Feebly interacting MP)

- DM production from SM annihilation (or decay) until number density of SM becomes Boltzmann suppressed n_{γ} constant 'freezes-in'
- $T \sim M$, χ 'freezes-in' yield increases with interaction strength,

x=m/T

When decay possible, usually dominates

$$\dot{n}_{\chi} + 3Hn_{\chi} = n_{Y}\Gamma_{Y\to\chi\chi} = g_{Y}\Gamma_{Y\to\chi\chi}m_{Y} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{(e^{E/T} + s)} \frac{1}{E}$$

- Some possibilities for FIMPs:
 - 1) FIMP is DM pair production in annihilation of SM particles (or in decay of particle in thermal equilibrium)
 - 2) FIMP is dark matter next to lightest 'odd' particle has long lifetime freeze-out as usual then decay to FIMP typically 1~10⁻¹²
 - collider signature for production of stable charged particles (or displaced vertices)
 - Impact on BBN
 - 3) FIMP is not DM, freezes-in and then decay to DM

$$\Omega_{DM} = rac{m_{DM}}{m_X} \Omega_X h^2$$

 Relic abundance and DM annihilation cross section no longer related, freeze-in produces DM abundance, DM annihilation can be large – freeze-out abundance small – enhancement in indirect detection

- Examples of FIMPs:
 - In general a singlet under SM (to prevent reaching thermal equilibrium) - for example the singlet scalar model used for freeze-out but for a different choice of couplings
 - Any 'dark sector' particle feebly coupled to SM
 - Dirac neutrino mass + supersymmetry : RH sneutrino FIMP
 - Gravitino or axino
 - Asymmetric freeze-in (baryon asymmetry)

Minimal FIMP models

• SM+ majorana fermion (DM) + real scalar + Z_2 symmetry (Klasen, Yaguna, 1309.2777) - 'simplified model'

$$\mathcal{L}_{\chi} = -rac{1}{2}M_{\chi}ar{\chi}\chi + g_{s}\phiar{\chi}\chi + ig_{p}\phiar{\chi}\gamma_{5}\chi,$$

$$\begin{split} V(\phi,H) = & -\mu_H^2 H^\dagger H + \lambda_H (H^\dagger H)^2 - \frac{\mu_\phi^2}{2} \phi^2 + \frac{\lambda_\phi}{4} \phi^4 + \frac{\lambda_4}{2} \phi^2 H^\dagger H \\ & + \mu_1^3 \phi + \frac{\mu_3}{3} \phi^3 + \mu \, \phi(H^\dagger H), \end{split}$$

• The scalar mixes with the Higgs

$$H_1 = h \cos \alpha + \phi \sin \alpha$$
,

• Parameters

$$M_{\chi}, M_{H_2}, g_s, \sin \alpha, \lambda_4, \mu_3.$$

• Some diagrams that contribute to DM annihilation

Minimal FIMP model

- Can reproduce relic density for DM with any mass
- From Higgs precision measurements: limit on the mixing with the scalar
- Few other direct or indirect signatures

Another example: Sneutrino

- Partner of LH neutrino NOT a good DM candidate
 - Very large contribution to direct detection- through Z exchange (Falk,Olive, Srednicki, PLB354 (1995) 99)
- Neutrino have masses RH neutrino + supersymmetric partner well-motivated if LSP then can be dark matter
 - Thermalized?
 - Non-negligible L-R mixing (Arina et al, 1503.02960)
 - New gauge interactions MSSM+U(1) (GB, DaSilva, Laa, Pukhov 1505.06243)
 - Both cases are viable with respect to LHC constraints and feature new signatures
 - Or not abundance from decay of other particles

MSSM+RH (s)neutrino

- The framework : MSSM + three generations (v_R + sneutrinoR).
- Assume pure Dirac neutrino mass
- Superpotential $W = y_{\nu} \, \hat{H}_{u} \cdot \hat{L} \, \hat{\nu}_{R}^{c} y_{e} \, \hat{H}_{d} \cdot \hat{L} \, \hat{\ell}_{R}^{c} + \mu_{H} \, \hat{H}_{d} \cdot \hat{H}_{u}$
- Small Yukawa couplings O(10⁻¹³) depending on assumption : neutrino mass saturates atmospheric neutrino or cosmological bound with degenerate neutrino

$$y_{\nu} \sin \beta \simeq 3.0 \times 10^{-13} \times \left(\frac{m_{\nu}^2}{2.8 \times 10^{-3} \text{ eV}^2}\right)^{1/2}$$

• Sneutrino mass same order as other sfermions – can be LSP

$$egin{aligned} -\mathcal{L}_{\mathrm{soft}} \supset ilde{M}_L^2 \, | ilde{L}|^2 + ilde{M}_{
u_R}^2 \, | ilde{
u}_R|^2 \ + \left(ilde{A}_
u \, H_u \cdot ilde{L} \, ilde{
u}_R^c - ilde{A}_e \, H_d \cdot ilde{L} \, ilde{\ell}_R^c + h.c.
ight) \end{aligned}$$

Sneutrino mixing

$$\tan 2\Theta = \frac{2m_{\nu}|\cot\beta\,\mu_H - A_{\nu}^*|}{m_{\tilde{\nu}_L}^2 - m_{\tilde{\nu}_R}^2}\,,$$

- Sneutrino not thermalized in early universe its interactions are too weak
- One possibility for DM is production through decays of sparticles
- Consider decay of MSSM-LSP after freeze-out (lifetime of NLSP is quite long)
- Relic density obtained from that of the NLSP (or MSSM-LSP) can be charged

$$\Omega^{ ext{FO}}_{ ilde{
u}_R} = rac{m_{ ilde{
u}_R}}{m_{ ext{MSSM-LSP}}} \, \Omega_{ ext{MSSM-LSP}}$$

- Consider the case where stau is the NLSP (and for simplicity assume SUGRA relations)
- Collider constraints Higgs; flavour constraints; susy searches (mostly not valid because stau is collider stable and charged); charged stable particles
- Constraints from BBN : lifetime of stau can be long enough for decay around or after BBN→ impact on abundance of light elements

Big Bang Nucleosynthesis

- BBN (T~MeV-10keV, t~0.1-10⁴s) allows to predict abundances of light elements D, He^3, He^4, Li .
- Depends on photon to baryon ratio
- In early Universe, energy density dominated by radiation (γ e)
- At high T, weak interaction rates were in thermal equilibrium

$$n + e^+ \longrightarrow p + \nu$$

 $n + \nu \longrightarrow p + e^-$

- Reverse process proceed at same rate and n/p~1
- At lower T: weak interactions fall out of equilibrium
- Freeze-out when interaction rate $\Gamma_{\text{weak}} < H$, species decouple
- When T approaches freeze-out (around 0.8MeV)

$$n/p \approx exp^{-\Delta m/T} \approx 1/6$$

- Nucleosynthesis begins with formation of Deuterium
- Number of photons>> number of nucleons the reverse process occurs much faster, deuterium production is delayed, starts only at T~0.1MeV

$$p+n \to D+\gamma$$

- ... and the chain continues with production of heavier elements
- Relationship between expansion rate of Universe (relate to total matter density) and density of p and n (baryonic matter density) determine abundance of light elements
- Main product of BBN ⁴He $Y \approx \frac{2n/p}{1+n/p} \approx 0.25$
- Other elements produced in lesser amounts D, ³He, ⁷Li

- If particle with lifetime > 0.1s decays can cause non-thermal nuclear reaction during or after BBN spoiling predictions in particular if new particle has hadronic decay modes
 - Kawasaki, Kohri, Moroi, PRD71, 083502 (2005)
- Alteration of n/p ratio for example . $\pi^- + p \rightarrow \pi^0 + n$
 - -> overproduction He⁴
- Hadrodissociation of He⁴ causes overproduction of D
 - $n+He^4 -> He^3+D, 2D+n, D+p+n$

• Key elements:

- Bhad: hadronic BR of stau (nuR+W)
- Evis : net energy carried away by hadrons
- Ystau: yield

LHC signatures

- Characteristic signature : stable charged particle NOT MET
- Staus live from sec to min: decay outside detector
- Searches
 - Cascades : coloured sparticles decay into jets + SUSY→ N
 jets + stau
 - Pair production of two stable staus
 - Passive search for stable particles
- Stable stau behaves like « slow » muons $\beta=p/E<1$
 - Use ionisation properties and time of flight measurement to distinguish from muon
 - kinematic distribution

Charged tracks from cascades

- Dominant contribution from squark pairs (heavy gluinos)
- Can probe mass ~600 GeV but depends on squark mass recall that some limits coming from signatures with MET do not apply

Pair production

- Pair production: no model dependence but EW cross section -> lower reach
- Staus look like 'slow' muons
- Main background muon pairs

MoEDAL detector

- Passive detector
- Array of nuclear track detector stacks
- Surrounds intersection region point 8
- Sensitive to highly ionising particles
- Does not require trigger, one detected event is enough
- Major condition : ionizing particle has velocity β <0.2

Benchmark point	Cascade	Pair
$357~{ m GeV}$	45	2.5
$400~{ m GeV}$	296	1.5
$442~{ m GeV}$	24	1.1
$600~{ m GeV}$	6	0.5

CERN-LHC MoEDAL-LHCL

B. Acharya et al, 1405.7662

Banerjee, et al, 1603.08834

Number of $\tilde{\tau}_1$'s with $\beta \leq 0.2$ with $\mathcal{L} = 3000 \, \mathrm{fb}^{-1}$

Other possible signatures

• LHC:

 Some models lead to displaced vertices or disappearing tracks

• searches for mediator (if coupling of mediator to SM is not suppressed

Other possible signatures

- When DM is light (well below GeV): limits from invisible meson decays, electron fixed targets..
- Indirect detection: Models with feeble couplings can lead to very long lifetime, if FIMP is not DM but decays into it. DM annihilation can be large - > boost factor for indirect detection
- Various cosmological constraints (dark sector sensitive to primordial initial conditions in freeze-in)

Direct detection – light DM

• FIMPS can be very light - new projects to search for very light DM with different materials, eg. superconductors—exploit DM-e scattering

DM with strong interactions

- Strong interactions with itself SIDM
- Strong interactions with SM SIMP

Strongly Interacting MP

Strong interactions of DM with SM particles (SIMP)

If thermal freeze-out: can only be subdominant DM component

Otherwise: some non-thermal mechanism or asymmetric

Constraints: DM captured and accreted at core of Earth, annihilating SIMP source of heat -> measurements of heat flow set strong constraints unless DM asymmetric

Here simplified model with vector or scalar mediator, e.g.

$$-\tilde{g}_{\chi}\phi_{\mu}\,\bar{\chi}\gamma^{\mu}\chi - \tilde{g}_{q}\phi_{\mu}\,\bar{q}\gamma^{\mu}q$$

Astrophysics constraints on Strong interaction with DM At collider probe interaction with ordinary matter

Searches SIMP

- Direct detection: large cross sections SIMP stopped in earth atmosphere no sensitivity in underground detectors,
- High altitude detectors search for SIMP above atmosphere (e.g. RSS-balloon based)
- If cross section not too large -> stringent constraints from undergound detectors
- Interactions of DM with baryons also constrained from CMB and large scale structure (Dvorkin et al, 1311.2937) affect dynamics of linear density perturbation in early universe: a baryon in halo of galaxy does not scatter from DM particles during age of galaxy

SIMP - Collider signature

SIMP produced in pairs – strong interations with ordinary matter can behave like neutrons – deposit energy or stop in hadronic calorimeter – depends on inelastic scattering of SIMP with hadrons

'trackless jets' DM jets zero tracks and less electromagnetic activity in Ecalorimeter than QCD jets - smaller charged energy fraction $\sum_i p_{\mathrm{T,i}}/p_{\mathrm{T,jet}}$

If all DM energy deposit in detector (2 back-to-back jets no MET)

Assume vector mediator m=1GeV

$$\sigma_{\chi N}/\sigma_{
m QCD}=1$$

Daci et al, 1503.05505

and many more DM models...

Conclusion

- Strong evidence on dark matter
- List of possible dark matter candidates and models has grown rapidly in last few years and covers a wide range of masses and interaction strengths
- WIMP hypothesis is being probed by LHC in a variety of signatures(not only MET), direct and indirect detection
- Still no clear picture although parameter space of popular models is shrinking - next few years will be crucial
- Dark matter might be much different than expected