

Connections & Future

Bjoern Penning

- Reminder: What is Dark Matter not?
- Reminder: How to search for Dark Matter
- Combination and near future
- Axion Experiments
- Future ideas

It took a few hundred years

- It took a few hundred years
- With the discovery of the Higgs boson the Standard Model has been completed

- It took a few hundred years
- With the discovery of the Higgs boson the Standard Model has been completed
- However, this is just the tip of the iceberg

What is DM?

- We know of four fundamental interactions
- Dark Matter does

Strong Force

What is DM?

- We know of four fundamental interactions
- Dark Matter does
 - interact gravitationally
 - not have any electromagnetic interaction
 - not interact via the strong force (not a baryon)
 - perhaps interact via the weak force but it is not the neutrino

Strong Force

What is DM?

- Dark matter is a hugely successful theory to explain plenty of observations
- It is the one theory that can successfully simulate and reproduce the universe on all scales:
 - Galaxy rotation curves
 - Galaxy clustering
 - Cluster collision
 - Large-scale structures
 - CMB fluctuations
 - Gravitational lensing

Angular scale

- Global fit of cosmological parameters, \(\Lambda\text{CDM}\):
 - $\rightarrow \Omega_{\Lambda} \approx 0.68$, $\Omega_{DM} \approx 0.27$, $\Omega_{b} \approx 0.05$

Earth

Earth

- DM annihilates in halo and create cosmic rays (AMS, Pamela)
- Excesses observed (positron high mass, antiproton low mass)
- Not pointing to sources

- DM annihilates in sun and creates neutrino detected on Earth (IceCube)
- Sensitivity approaching viable models

- DM annihilates in dwarf galaxies/GC creating continuous or line photon spectrum (Fermi-LAT)
- Interesting excess observed
- Bright future: HESS2, HAWC, CTA, GAMMA- 400...

- DM annihilates in halo and create cosmic rays (AMS, Pamela)
- Excesses observed (positron high mass, antiproton low mass)
- Not pointing to sources

pproaching viable models

- DM annihilates in dwarf galaxies/GC creating continuous or line photon spectrum (Fermi-LAT)
- Interesting excess observed
- Bright future: HESS2, HAWC, CTA, GAMMA- 400...

Earth

- DM relic density predicts DM candidates accessible at collider experiments
- Only type of experiment possibly can create DM laboratory
- Independent systematicular uncertainties and performance compared to other searches
- DM has to be kinematically accessible: ~1-1000GeV

- DM relic density predicts DM candidates accessible at collider experiments
- Only type of experiment that possibly can create DM in the laboratory
- Independent systematic uncertainties and performance compared to other searches
- DM has to be kinematically accessible: ~1-1000GeV

- Detect DM as our solar system passes through the galactic halo
 - v~10⁻³ c
 - Kinetic energy ~ 100 keV
- Detected by recoils off ultra sensitive detectors placed deep underground
- Roughly 1 interaction per kg per year
- Very stringent cleanliness and background rejection requirements
- Variety of detection methods and targets

Direct Detection

- Momentum transfer crucial,
- Low mass difficult (as opposed to collider)

How do we connect and learn from all three fields?

- Leads to known interactions
 - scalar (ψψ),
 - pseudo scalar $(\overline{\Psi}\gamma^5\Psi)$,
 - vector ψγ^μψ,
 - axial-vector (Ψγμγ5Ψ)
- Interesting kinematics and experimental sensitivities

EWK style (equal to leptons)

Vector

 $g_{\rm DM} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi$

Besides very low DM masses DD wins clearly over collider

Axial-Vector

 $g_{\rm DM} Z_{\mu}^{\prime\prime} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$

DD and collider are equal in overall sensitivity but probe different regions of parameter space

mass based (Yukawa)

Scalar

 $g_{\rm DM} S \bar{\chi} \chi$

DD and collider are equal in overall sensitivity but probe different regions of parameter space

Pseudo-Scalar

 $g_{\mathrm{DM}}Par{\chi}\gamma^5\chi$

No limits from DD (only from ID).

Collider provides limits similar
to scalar couplings

DM can only b discovered by combining these approaches

- Discovery of DM will be discovery of two particles
 - dark matter itself
 - the dark mediator
- More appropriate to interpret results in terms of m_{DM} and m_{Med}

Interplay

- Continue to provide viable models and identify unexplored phase space
- Provide original ideas across experimental approaches & provide leadership

The (near) future

Outlook

The Path to Discovery

The Path to Discovery

Timeline

- Panda-X
- Xenons 1T
- Xenon1T large exposure
- LZ assembly
- LZ starting, XenonNT construction/starting
- 2nd Gen large exposures, towards 3rd Gen

LHC

- New signatures (boosted objects, scalar DM,VBF). Long lived particles etc
- LHC: Upgrade, Full dataset paper, combinations, towards RunIII

 LHC Run III starts, aiming for HL-LHC

Astro

 Indirect Searches with AMS, IceCube, DES and Fermi collect further data, yielding greater sensitivity

- New dwarf discoveries by LSST, Galactic Center by Fermi, GAIA and other sattelites
- CTA, next gen radio surveys (MeerKAT, SKA)

Future Ideas in Dark Matter

ADMX Experiment

- ADMX another 2nd gen dark matter experiment
- Axions convert to microwave photons (GHz)
- Targets the entire 1-10
 GHz region over 6 years
- If the QCD axion with a mass in that region makes up most of the local dark matter density, ADMX has a very good chance of fining it

ADMX Experiment

- OPerating at since January 2017
- ADMX G2 will cover much of the plausible axion mass range
- At ~660 MHz and scanning upwards, discovery can happen any day

Going beyond

The mass and cross section span many orders of magnitude

New Ideas for WIMP detection

Explosion of new ideas over last few years

New Idea for Axion/Dark Photons

EXP	target material	readout	science	budget	timescale
scintillating bubble chambers	Xe, Ar, C _s F _s H20	light heat (bubble)	GeV WIMPS	\$200K	10 kg Xenon 2 yr program to test with coherent scattering CENNS
CYGNUS HD-10	SF6 4He	charge cloud tomography, directional sensitivity	GeV WIMPS	R&D \$250k 1 m3 ~ \$450k 10 m3 ~ \$3M	R&D 1 yr 1 m3 : 2yr 10 m3: 2ry
DAMIC	Si	charge	GeV WIMPS	\$3M	start 2019-2020 the construction R&D going now
news-G	H. He	charge	GeV WIMPS		installing 140 cm sphere at SNOLAB in 2018
liquid xenon TPC	Xe	charge only	sub-GeV DM - ER	\$3M	1 yr design 1 yr deploy 10kg @surf 1 yr commision and run
SENSEI	Si	charge	sub-GeV DM - ER	\$1.2M	2 yrs to build the 100g experiment starting (could start now)
Dopped germanium with internal amplification	Ge semiconductor	charge 0.1 eV (nuclear)	sub-GeV DM - ER	R&D 600k 10 kg -> 1.5M 100kg -> 10M	R&D +3yr
2d graphere Ptolomey-G3	graphene cube	charge(G-FET) (300 B channel count @ 1 kHz	sub-GeV DM - ER	\$200k needed for wafer fab for demonstrator (1e4 cm2)	1 yr fab 1 yr data ready for the "generation 1"
single photon detector with TES readout	GaAs(Si)	light	sub-GeV DM - ER	R&D 200k project 600k	R&D 1eV thr the project would on on SuperCDMS 2020
Nal/ScI cooled crystals	Nal/Scl	light	sub-GeV DM - ER	R&D - \$250k projecy \$100k	R&D - 3 yr project 2020 w/TES
superconducting AL cube	Al superconductor	TES meV energy resolution.	sub-GeV DM - ER		+10 yr science program
LHe detector	Не	phonon	sub-GeV DM - NR	ЗМ	2018 R&D 2020 final design 2022 start data taking
field ionization helium	Не	phonon	sub-GeV DM - NR	R&D \$725k	R&D 3 years
color centers	crystals (example: CaF)	light	sub-GeV DM - NR		R&D going on now
bubble chambers PICO	wide range of target nuclei. This is what makes then unique.	heat (bubbles)	spin dependent	lowest cost per ton of any target mass pico-500 - ~\$3M	just finished pico-60 pico40L in Fy17 (funded) pico 500 coming
emulsions (news-dm)	high position resolutions nuclear emulsions (silver bromide crystals + I C O N H S)	imaging with optical microscopes, and validation of candidates with X-ray microscope	beat neutrino floor	-	R&D phase complete. Technical test to confirm negligible background running now.

Summary

- DM is out there and will transform our understanding of the universe
- LHC is running, DD, and indirect detection are improving rapidly – the field is being transformed now
- DM has to be discovered in several fields to be confirmed and measured
- Not necessarily imply vanilla dark matter:
 SuperWIMPs, WIMPless DM may be warm,....
- In the best of all worlds: Multiple discoveries (direct detection, the LHC, indirect detection) & constraints of the DM properties & DM astronomy
- If no discovery: "ultimate" WIMP DM detectors might at least be able to disprove the WIMP hypotheses (still valuable)
- Plethora of new ideas and experiments

Backup

E.g.: Constraining Fermi-LAT

- Testing Fermi-LAT excess and inclusive analyses using collider data
- Inclusive search has significantly better expected sensitivity

E.g.: Constraining Fermi-LAT

- Testing Fermi-LAT excess and inclusive analyses using collider data
- Inclusive search has significantly better expected sensitivity
- Excluding already part of the phase space
- More 13 TeV data will be very exciting

Interplay

Derive constraints from astrophysical measurements

One model...

* to rule them all.

Interplay

Derive constraints from astrophysical measurements

One model...

* to rule them all.

These connection are of uttermost importance to be 'DM Hunter'

