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• Reminder: What is Dark Matter not?

• Reminder: How to search for Dark 
Matter

• Combination and near future

• Axion Experiments

• Future ideas
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• It took a few hundred years
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• It took a few hundred years

• With the discovery of the Higgs 
boson the Standard Model has 
been completed
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• However, this is just the tip of the 
iceberg

• It took a few hundred years

• With the discovery of the Higgs 
boson the Standard Model has 
been completed

68%

27%

  5%
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fundamental interactions

• Dark Matter does

What is DM?
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weak force but it is not 
the neutrino

✓ ✗
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• not  interact via the 

strong force (not a 
baryon)

Electromagnetism

• We know of four 
fundamental interactions

• Dark Matter does

• not have any 
electromagnetic 
interaction

• interact gravitationally

What is DM?
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Planck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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• Dark matter is a hugely successful 
theory to explain plenty of 
observations  

• It is the one theory that can 
successfully simulate and 
reproduce the universe on all 
scales: 

- Galaxy rotation curves

- Galaxy clustering 

- Cluster collision

- Large-scale structures

- CMB fluctuations

- Gravitational lensing 

9

• Global fit of cosmological 
parameters, ΛCDM: 
→ ΩΛ≈ 0.68,  ΩDM ≈ 0.27, Ωb≈ 0.05

What is DM?
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• DM annihilates in halo and create cosmic 
rays (AMS, Pamela) 

• Excesses observed (positron high mass, 
antiproton low mass )

• Not pointing to sources

12

• DM annihilates in sun and creates 
neutrino detected on Earth (IceCube)

• Sensitivity approaching viable models

• DM annihilates in dwarf galaxies/GC creating 
continuous or line photon spectrum  (Fermi-LAT)

• Interesting excess observed 

• Bright future: HESS2, HAWC, CTA,  
GAMMA- 400…

DM Detection
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• DM annihilates in halo and create cosmic 
rays (AMS, Pamela) 

• Excesses observed (positron high mass, 
antiproton low mass )

• Not pointing to sources

13

• DM annihilates in sun and creates 
neutrino detected on Earth (IceCube)

• Sensitivity approaching viable models

• DM annihilates in dwarf galaxies/GC creating 
continuous or line photon spectrum  (Fermi-LAT)

• Interesting excess observed 

• Bright future: HESS2, HAWC, CTA,  
GAMMA- 400…

DM Detection

Hooman, Sergio         
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• DM relic density predicts DM 
candidates accessible at 
collider experiments

• Only type of experiment that 
possibly can create DM in the 
laboratory

• Independent systematic 
uncertainties and performance 
compared to other searches 

• DM has to be kinematically 
accessible: ~1-1000GeV

16

DM Detection

Geneviève         
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• DM relic density predicts DM 
candidates accessible at 
collider experiments

• Only type of experiment that 
possibly can create DM in the 
laboratory

• Independent systematic 
uncertainties and performance 
compared to other searches 

• DM has to be kinematically 
accessible: ~1-1000GeV
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DM Detection
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• Detect DM as our solar system 
passes through the galactic halo

-  v~10-3 c 

- Kinetic energy ~ 100 keV

• Detected by recoils off ultra -
sensitive detectors placed deep 
underground 

• Roughly 1 interaction per kg per year 

• Very stringent cleanliness and 
background rejection requirements 

• Variety of detection methods and   
targets 

20

DM
DM Detection
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Direct Detection

heavy DM

light DM

small recoil

large recoil

Nucleus

DM

• Momentum transfer crucial, 

• Low mass difficult (as opposed to collider)
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How do we connect and learn from 
all three fields?
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Parameterizing Dark Matter

SM

SM

?

• In a real life we need some mediator between the ‘dark World’ and the known 
Universe



Björn Penning ● DM Lectures ● Future 24

Parameterizing Dark Matter

SM

SM
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• In a real life we need some mediator between the ‘dark World’ and the known 
Universe
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Parameterizing Dark Matter

SM

SM

SM

SM

?
S/V

• Leads to known interactions 

• scalar (ψψ), 

• pseudo scalar (ψγ5ψ), 

• vector ψγμψ, 

• axial-vector (ψγμγ5ψ)

• Interesting kinematics and experimental sensitivities

—

—

—

• In a real life we need some mediator between the ‘dark World’ and the known 
Universe
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Vector Axial-Vector

Scalar

Besides very low DM masses  
DD wins clearly over collider   

DD and collider are equal in  
overall sensitivity but probe different  

regions of parameter space 

DD and collider are equal in  
overall sensitivity but probe different  

regions of parameter space   

No limits from DD (only from ID).  
Collider provides limits similar  

to scalar couplings 

Pseudo-Scalar

m
as

s 
ba

se
d 
 

(Y
uk

aw
a)

 
EW

K 
st

yl
e 
 

(e
qu

al
 to

 le
pt

on
s)

 

gDMZ 0
µ�̄�

µ� gDMZ 00
µ �̄�

µ�5�

gDMS�̄� gDMP �̄�5�

Parameterizing Dark Matter

DM can only b discovered by combining these approaches
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Parameterizing Dark Matter

SM

SM

SM

SM

?

• In a real life we need some mediator between the ‘dark World’ and the known 
Universe

• Discovery of DM will be discovery of two particles

- dark matter itself

- the dark mediator 

• More appropriate to interpret results in terms of mDM and mMed 

S/V
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Interplay
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• Continue to provide viable models 
and identify unexplored phase 
space

• Provide original ideas across 
experimental approaches & 
provide leadership
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The (near) future
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Outlook
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The Path to Discovery
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The Path to Discovery
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The Path to Discovery
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The Path to Discovery
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The Path to Discovery
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The Path to Discovery
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The Path to Discovery
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The Path to Discovery
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Great potential ahead
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Timeline

2017 2018 2019 2020 2021

Direct DM

LHC

39

• Panda-X 
• Xenons 1T

• Xenon1T large 
exposure 

• LZ assembly

• LZ starting,  
XenonNT construction/starting

• 2nd Gen large 
exposures, towards 3rd 
Gen

• LHC: Upgrade, Full dataset paper, 
combinations, towards RunIII

• Indirect Searches with AMS, 
IceCube, DES and Fermi 
collect further data, yielding 
greater sensitivity 

• New dwarf discoveries by 
LSST, Galactic Center by 
Fermi, GAIA and other 
sattelites

• CTA, next gen radio 
surveys (MeerKAT, SKA)

• New signatures (boosted objects , 
scalar DM,VBF). Long lived 
particles etc

Astro

• LHC Run III starts, aiming 
for HL-LHC
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Future Ideas in Dark Matter
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• ADMX - another 2nd gen 
dark matter experiment

• Axions convert to 
microwave photons 
(GHz)

• Targets the entire 1-10 
GHz region over 6 years 

• If the QCD axion with a 
mass in that region 
makes up most of the 
local dark matter density, 
ADMX has a very good 
chance of fining it 

41

ADMX Experiment
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• OPerating at since January 2017

• ADMX G2 will cover much of the plausible axion mass range 

• At ~660 MHz and scanning upwards, discovery can happen any day
42

ADMX Experiment

Spring 2017 operations



Björn Penning ● DM Lectures ● Future

The mass and cross section span many orders of magnitude 

43

Going beyond
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New Ideas for WIMP detection

Explosion of new ideas over last few years 
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New Idea for Axion/Dark Photons
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Summary

• DM is out there and will transform our 
understanding of the universe

• LHC is running, DD, and indirect detection are 
improving rapidly – the field is being transformed 
now 

• DM has to be discovered in several fields to be 
confirmed and measured

• Not necessarily imply vanilla dark matter: 
SuperWIMPs, WIMPless DM may be warm,….

• In the best of all worlds: Multiple discoveries (direct 
detection, the LHC, indirect detection) & constraints 
of the DM properties & DM astronomy 

• If no discovery: “ultimate” WIMP DM detectors might 
at least be able to disprove the WIMP hypotheses 
(still valuable) 

• Plethora of new ideas and experiments
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Backup
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E.g.: Constraining Fermi-LAT arXiv:1505.07826 

Excluded

• Testing Fermi-LAT excess and inclusive analyses using collider data

• Inclusive search has significantly better expected sensitivity 

• Excluding already part of the phase space 

• More 13 TeV data will be very exciting 
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E.g.: Constraining Fermi-LAT

• Testing Fermi-LAT excess and inclusive analyses using collider data

• Inclusive search has significantly better expected sensitivity 

• Excluding already part of the phase space 

• More 13 TeV data will be very exciting 

arXiv:1505.07826 

Excluded
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Interplay

Χ

Χ

q

q

q

q

One model… to rule them all.

Constrain H→inv  
from DD

Translate DD limits to  
collider constraints

Derive constraints from  
astrophysical measurements 
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Interplay

Χ
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One model… to rule them all.

Constrain H→inv  
from DD

Translate DD limits to  
collider constraints

Derive constraints from  
astrophysical measurements 

These connection 
are of uttermost 
importance to be 

‘DM Hunter’


