N(N)LO calculations: an overview

Gionata Luisoni

gionata.luisoni@cern.ch

CERN

10.09.2017

TOOLS 2017

Corfu

Credits: Many thanks to N. Greiner, G.Heinrich, G.Ossola and J.Winter

Outline

- Motivation: why NLO, why automation?
- NLO automation: the key ingredients and the past challenges
- Latest developments
- Tools: state-of-the art
- Towards NNLO
- Conclusions and outlook

<u>Disclaimer</u>: despite trying to be comprehensive, this is a very biased selection of tools and I may have forgotten your favorite one. I apologize for potential omissions and if you point them out to me I would be glad to include them!

Motivation: why NLO, why automation?

Precision at the LHC

[1610.01843]

LHC is a tough environment for precision..

- QCD is omnipresent at LHC:
 - PDF
 - Hard scattering and loop corrections
 - Parton Shower
 - Hadronization
 - Further non perturbative effects

Master formula:

$$\sigma_{\mathbf{h_1h_2} \to \mathbf{X}} = \sum_{\mathbf{a}, \mathbf{b}} \int_0^1 \, \mathrm{d}\mathbf{x_1} \mathrm{d}\mathbf{x_2} \frac{\mathbf{f_{h_1/a}}(\mathbf{x_1}, \mu_F^2) \, \mathbf{f_{h_2/b}}(\mathbf{x_2}, \mu_F^2)}{\text{PDFs}} \\ \times \frac{\hat{\sigma}_{\mathbf{a}, \mathbf{b} \to \mathbf{X}} \left(\mathbf{x_1}, \mathbf{x_2}, \alpha_{\mathbf{s}}(\mu_R^2), \frac{\mathbf{Q^2}}{\mu_F^2}, \frac{\mathbf{Q^2}}{\mu_R^2}\right)}{\text{partonic cross section}} \\ \left[+ \mathcal{O}\left(\frac{1}{\mathbf{Q^2}}\right) \right] \\ \text{power corrections}$$

Would like to know all components with high precision!

Fixed order calculations

Where the partonic cross section can be written as:

 $\hat{\sigma}_{a,b o X} = lpha_s^n ig[\sigma_0 + lpha_s \sigma_1 + lpha_s^2 \sigma_2 + lpha_s^3 \sigma_3 + \mathcal{O}(lpha_s^4) ig]$ LO NLO NNLO N3LO

• LO:

Predicts only the order of magnitude:

- > scale in coupling is not defined
- ➤ 1 parton 1 jet

• NLO:

First reliable predictions:

- > scale choices can be made
- > first description of jet substructure

• NNLO:

Possible to quantify uncertainties:

- > convergence can be checked
- > richer jet substructure

Why automation?

[Salam, La Thuile 2012]

- flexibility
- reliability
- speed
- •

more focus on phenomenology

explosion of calculations in past 18 months

2002 2004 2006 2008 2010 2012 2014 2016

[Salam, LHCP 2016]

NLO automation: the key ingredients and the past challenges

NLO calculation in a nutshell

For a full NLO calculation the following ingredients are needed:

$$\hat{\sigma}_{a,b\to X}^{\rm NLO} = \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\rm Born} + \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{\rm NLO}^{\rm R} - \mathrm{d}\sigma_{\rm NLO}^{\rm S} \right) + \int_{\mathrm{d}\Phi_m} \left[\int_{\mathrm{d}\Phi_1} \mathrm{d}\sigma_{\rm NLO}^{\rm S} + \mathrm{d}\sigma_{\rm NLO}^{\rm V} \right]$$

- Tree amplitude:
 - Born level matrix element
 - Real radiation matrix element
- Subtraction scheme
- Phase space integral

Monte Carlo (MC)

Virtual corrections

One Loop Program (OLP)

Note: for <u>loop-induced</u> processes this picture changes slightly

NLO calculation: tree-level amplitudes

• For a full NLO calculation the following ingredients are needed:

$$\hat{\sigma}_{a,b\to X}^{\rm NLO} = \int_{{\rm d}\Phi_m} {\rm d}\sigma_{\rm Born} + \int_{{\rm d}\Phi_{m+1}} \left({\rm d}\sigma_{\rm NLO}^{\rm R} - {\rm d}\sigma_{\rm NLO}^{\rm S} \right) + \int_{{\rm d}\Phi_m} \left[\int_{{\rm d}\Phi_1} {\rm d}\sigma_{\rm NLO}^{\rm S} + {\rm d}\sigma_{\rm NLO}^{\rm V} \right]$$

- Tree amplitude:
 - Born level matrix element
 - Real radiation matrix element
- Subtraction scheme
- Phase space integral

Virtual corrections

Tree-level amplitude generators:

- Automated generation of tree-level matrix elements available since long time now
 - Many codes appeared for the first time in the '90s → continuously updated
 - Based on helicity amplitudes, off-shell currents, Dyson-Schwinger recursive equations or Berends-Giele recursion relations

<u>Disclaimer 1:</u> most of the codes were further developed and refined by several other authors to become more flexible and automated. Here I list only the beginnings in a sort of historical perspective. More later... <u>Disclaimer 2</u>: many of the automated 1-loop amplitude generators have also tree-level capabilities. Here only genuine tree-level codes are mentioned.

NLO calculation: phase space

• For a full NLO calculation the following ingredients are needed:

$$\hat{\sigma}_{a,b\to X}^{\rm NLO} = \int_{{\rm d}\Phi_m} {\rm d}\sigma_{\rm Born} + \int_{{\rm d}\Phi_{m+1}} \left({\rm d}\sigma_{\rm NLO}^{\rm R} - {\rm d}\sigma_{\rm NLO}^{\rm S}\right) + \int_{{\rm d}\Phi_m} \left[\int_{{\rm d}\Phi_1} {\rm d}\sigma_{\rm NLO}^{\rm S} + {\rm d}\sigma_{\rm NLO}^{\rm V}\right]$$

- Tree amplitude:
 - Born level matrix element
 - Real radiation matrix element
- Subtraction scheme
- Phase space integral

Virtual corrections

Phase space generators

- Often developed together with tree-level amplitude generators:
 - need the knowledge of the amplitude structure to optimize phase space sampling

BASES/SPRING

[Kawabata]

Mint (in POWHEG-BOX)

[Nason]

Kaleu

[Van Hameren]

MadEvent (with MadGraph)

[Maltoni, Stelzer]

Helac-Phegas

[Cafarella, Papadopoulos, Worek]

Sherpa (with Amegic++ Comix)

[Gleisberg, Höche, Krauss, Schaelicke, Schumann, Winter]

Herwig 7

[Bellm et al.]

CompHEP

[llyin, Kovalenko, Pukhov]

• • •

WHIZARD

Kilian Ohl, Reuter

10/09/2017 - Gionata Luisoni Tools 2017, Corfu

NLO calculation: subtraction

• For a full NLO calculation the following ingredients are needed:

$$\hat{\sigma}_{a,b\to X}^{\rm NLO} = \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\rm Born} + \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{\rm NLO}^{\rm R} - \mathrm{d}\sigma_{\rm NLO}^{\rm S} \right) + \int_{\mathrm{d}\Phi_m} \left[\int_{\mathrm{d}\Phi_1} \mathrm{d}\sigma_{\rm NLO}^{\rm S} + \mathrm{d}\sigma_{\rm NLO}^{\rm V} \right]$$

- Tree amplitude:
 - Born level matrix element
 - Real radiation matrix element
- Subtraction scheme
- Phase space integral

Virtual corrections

Recap: Why do we need a subtraction scheme?

• When integrating over the inclusive (m+1)-particle phase space the real-radiation matrix element becomes singular in the soft (E \rightarrow 0) and collinear (θ_{ij} \rightarrow 0) limit:

- Same divergent structure as virtual contribution, which becomes manifest only once the phase space integration is performed
- Introduce subtraction which reproduces the real-radiation singular behaviour, but can be integrated analytically (poles cancellation becomes manifest)

$$\hat{\sigma}_{a,b\to X}^{\rm NLO} = \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{\rm Born} + \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{\rm NLO}^{\rm R} - \mathrm{d}\sigma_{\rm NLO}^{\rm S} \right) + \int_{\mathrm{d}\Phi_m} \left[\int_{\mathrm{d}\Phi_1} \mathrm{d}\sigma_{\rm NLO}^{\rm S} + \mathrm{d}\sigma_{\rm NLO}^{\rm V} \right]$$

Subtraction schemes at NLO

- Most used subtraction schemes at NLO:
 - Catani-Seymour dipole method (CS) [Catani, Seymour; Catani, Dittmaier, Seymour, Trocsanyi]
 - Frixione-Kunszt-Signer (FKS) [Frixione, Kunszt, Signer]
 - Nagy-Soper [Nagy, Soper]

• Various tools have an implementation of these schemes along with

the tree-level amplitude generators:

Sherpa CS dipoles

[Gleisberg, Höche, Krauss, Schönherr, Schumann, Siegert, Winter]

Autodipole

[Hasegawa, Moch, Uwer]

MadGraph/MadEvent MadDipole/MadFKS

[Frederix, Gehrmann, Greiner] [Frederix, Frixione, Maltoni, Stelzer]

TevJet

[Seymour, Tevlin]

WHIZARD FKS

[Reuter et al.]

Helac-Dipoles (+ Nagy-Soper)

[Bevilacqua, Czakon, Kuboz, Papadopoulos, Worek]

Herwig7

[Bellm et al.]

POWHEG-BOX FKS

[Alioli, Nason, Re, Oleari]

• Other schemes: (mainly developed for NNLO, but applicable also at NLO)

Antenna

[Kosower; Gehrmann et al.]

al l

 \rightarrow q_T - subtraction

[Catani, Grazzini et al.]

CoLoRFul

[Somogyi et al.]

> N-jettiness

[Gaunt et al.; Boughezal et al.]

> Residue-improved SD [Czakon et al.]

> Nested subtr. based on SD

[Caola et al.]

10/09/2017 - Gionata Luisoni Tools 2017, Corfu

NLO calculation: virtual correction

• For a full NLO calculation the following ingredients are needed:

$$\hat{\sigma}_{a,b\to X}^{\rm NLO} = \int_{{\rm d}\Phi_m} {\rm d}\sigma_{\rm Born} + \int_{{\rm d}\Phi_{m+1}} \left({\rm d}\sigma_{\rm NLO}^{\rm R} - {\rm d}\sigma_{\rm NLO}^{\rm S}\right) + \int_{{\rm d}\Phi_m} \left[\int_{{\rm d}\Phi_1} {\rm d}\sigma_{\rm NLO}^{\rm S} + {\rm d}\sigma_{\rm NLO}^{\rm V}\right]$$

- Tree amplitude:
 - Born level matrix element
 - Real radiation matrix element
- Subtraction scheme
- Phase space integral

Virtual corrections

For long time considered the bottleneck in the automation of NLO calculation!

1-loop amplitudes computation

Generic 1-loop amplitude:

$$\int_{1}^{2} = \int d^{d}\bar{q} \, \frac{\mathcal{N}(\bar{q}, \epsilon)}{\bar{D}_{0}\bar{D}_{1}\cdots\bar{D}_{n-1}}$$

• Can be decomposed in Master Integrals (MIs): [Passarino, Veltman]

$$= c_4 + c_3 + c_2 + c_1$$

- Reduce problem of computing 1-loop integral to the determination of the coefficients of the linear combination of MIs (reduction).
 - Various way of doing this, mainly two techniques were automatized:
 - → Integrand reduction [Ellis, Giele, Kunszt, Melnikov, Mastrolia, Mirabella, Ossola, Papadopoulos, Peraro, Pittau, ...]
 - Tensor reduction [Binoth, Denner, Dittmaier, Fleischer, Guillet, Heinrich, v. Oldenborgh, Pilon, Reiter, Riemann, Vermaseren ...]
- Tensor or scalar MIs coded into dedicated libraries

From 1-loop amplitude generators to scalar 1-loop MIs libraries

[Hahn, Perez-Victoria]

[v.Hameren]

[Carrazza, Ellis, Zanderighi]

[v.Oldeborgh]

[Patel]

• From scalar 1-loop libraries to 1-loop amplitude generators

Amplitude & code generators:

FF

MC - OLP: the Binoth LH Accord interface

 In order to allow to easily interface the various MCs' with several OLPs', use a standard interface for communication

- 2 step interface:
 - pre-runtime: fix conventions / tell OLP which processes are needed
 - runtime: call OLP for amplitude at a given phase space point
- Recently updated to increase automation and flexibility:
 - Support for dynamical parameters (coupling, masses, ...)
 - Synchronization of EW schemes
 - Standards for treatment of unstable phase space points
 - Standards for merging different jet multiplicities
 - Extension to provide also colour correlated (CC) and helicity correlated (HC)
 tree amplitudes

BLHA

• The Binoth Les Houches Accord Interface

Tools 2017, Corfu

Order and contract files

We can also compare order and contract files:

OLE_order.lh # Created by Sherpa-2.2.2

MatrixElementSquareType CHsummed

CorrectionType QCD IRregularisation CDR AlphasPower 2 AlphaPower 0

OperationMode CouplingsStrippedOff ResonanceTreatment FixedWidthScheme

EWRenormalisationScheme alphaMZ

process list 1 -1 -> 6 -6 -1 1 -> 6 -6

21 21 -> 6 -6

```
# vim: syntax=olp
#@OLP GoSam 2.0.4
#@IgnoreUnknown True
#@IgnoreCase False
#@SyntaxExtensions
MatrixElementSquareType CHsummed | OK
CorrectionType QCD | OK
IRregularisation CDR | OK
AlphasPower 2 | OK
AlphaPower 0 | OK
OperationMode CouplingsStrippedOff | OK
ResonanceTreatment FixedWidthScheme | OK # Ignored by OLP
EWRenormalisationScheme alphaMZ | OK # Ignored by OLP
1-1->6-6 | 11
-11->6-6 | 12
21 21 -> 6 -6 | 10
```

Partonic process label used for communication between MC and OLP

OLE_order.lh]

Latest developments

10/09/2017 - Gionata Luisoni Tools 2017, Corfu

EW corrections

- After automation of QCD, efforts started focusing on EW corrections
- Few additional aspects to be careful about:
 - Bookkeeping
 - > when tree levels at various orders in α_s and α lead to the same final state (example in the next slide)
 - Gauge invariant treatment of unstable particles via complex mass scheme
 - In 1-loop EW computation complexity grows faster than QCD
 - More possibilities for particles running in the loop, depending also on the chosen gauge

EW corrections: bookkeeping in W+2 jets

EW corrections

Most recent NLO EW results:

• Recola pp o lljj [1411.0916] $pp o e^+e^-\mu^+\mu^-/\mu^+\mu^-$ [1601.07787] [1611.05338] $pp o e^+\nu_e\mu^-\bar{\nu}_\mu$ [1605.03419] $pp o t\bar{t} o e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$ [1607.06671] $pp o e^+\nu_e\mu^-\bar{\nu}_\mu jj$ [1611.02951] $pp o t\bar{t}H o e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}H$ [1612.07138] $pp o e^+\nu_e\mu^+\nu_\mu jj$ [1708.00268]

Sherpa/Munich + OpenLoops

$$pp \to W + 1, 2, 3 \text{ jets}$$
 [1412.5157]
 $pp \to ll/l\nu/\nu\nu + 0, 1, 2 \text{ jets}$ [1511.08692]
 $pp \to ll\nu\nu$ [1705.00598]

MadGraph5 aMC@NLO + MadLoop

$$pp \to t\bar{t}H/Z/W$$
 [1504.03446]
 $pp \to t\bar{t}$ [1606.01915][1705.04105]
 $pp \to 2 \, \text{jets}$ [1612.06548]

MadDipole/Sherpa + GoSam

$$pp \to W + 1, 2, 3 \text{ jets}$$
 [1507.08579]
 $pp \to \gamma \gamma + 0, 1, 2 \text{ jets}$ [1706.09022]

Tools: state-of-the-art

Summary of (semi-) automated NLO tools

 Several existing frameworks for (semi-) automated NLO simulations and more:

Helac-NLO

[Bevilacqua, Czakon, Garzelli, v.Hameren, Kardos, Malamos, Papadopoulos, Pittau, Worek, Shao]

Sherpa

[Höche, Krauss, Kuttimalai, Schönherr, Schumann, Siegert, Thompson, Winter, Zapp]

Whizard

[Brass, Chokoufe, Kilian, Ohl, Reuter, Rothe, Schmidt, Sekulla, Shim, Speckner, Stau, Steinemeier, Weiss, Zhao]

Herwig-7 / Matchbox

[Bellm, Gieseke, Grellscheid, Kirchgaeßer, Loshaj, Nail, Papaefstathiou, Plätzer, Podskubka, Rauch, Reuschle, Richardson, Schichtel, Seymour, Siódmok, Webber]

MG5_aMC@NLO

[Alwall, Artoisenet, Degrande, Frederix, Frixione, Fuks, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro]

POWHEG-BOX

[Alioli, Hamilton, Jezo, Nason, Oleari, Re, Zanderighi]

Summary of (semi-) automated NLO tools

• Several existing frameworks for (semi-) automated NLO simulations

- Many other more process specific tools: MCFM, VBFNLO,...
- Can be interfaced to further analysis tools: Fastjet, Rivet, ... Talks by G. Soyez, A.Buckley
- Possible to perform LO/NLO computations in your favourite BSM model
 using interfaces to FeynRules, ...
 Talks by B. Fucks, O.Mattelaer

Other 1-loop programs

- Other codes for the computation of 1-loop amplitudes, which are specialized on massless processes with many legs:
- Record multiplicity in jet and vector boson + jets calculations at NLO in QCD
- Based on generalized unitarity

Blackhat

[Bern, Dixon, Febres Cordero, Höche, Ita, Kosower, Maître, Ozeren]

Njet

[Badger, Biedermann, Uwer, Yundin]

Tools 2017, Corfu

Towards NNLO

Towards NNLO automation

- NNLO starts to be the new automation frontier
- Several challenges ahead:

$$\begin{split} \hat{\sigma}_{a,b\to X}^{\mathrm{NNLO}} &= \hat{\sigma}_{a,b\to X}^{\mathrm{NLO}} \\ &+ \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{R}} - \mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{S}} \right) + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{S}} \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{V},1} - \mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{VS},1} \right) + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{VS},1} \\ &+ \int_{\mathrm{d}\Phi_{m}} \mathrm{d}\sigma_{\mathrm{NNLO}}^{\mathrm{V},2} \end{split}$$

 $d\sigma^{R}_{
m NNLO}$ - double real: tree-level radiation of 2 additional partons to tree-level

 ${
m d}\sigma_{
m NNLO}^{
m V,1}$ - real-virtual: interference between 1-loop + 1-emission and tree-level 1-emission amplitude

 ${
m d}\sigma_{
m NNLO}^{
m V,2}$ - double virtual: interference between 2-loops virtual and born tree-level, and 1-loop amplitude squared

Towards NNLO automation

- NNLO starts to be the new automation frontier
- Several challenges ahead:

$$\begin{split} \hat{\sigma}_{a,b\to X}^{\text{NNLO}} &= \hat{\sigma}_{a,b\to X}^{\text{NLO}} \\ &+ \int_{\text{d}\Phi_{m+2}} \left(\text{d}\sigma_{\text{NNLO}}^{\text{R}} - \text{d}\sigma_{\text{NNLO}}^{\text{S}} \right) + \int_{\text{d}\Phi_{m+2}} \text{d}\sigma_{\text{NNLO}}^{\text{S}} \\ &+ \int_{\text{d}\Phi_{m+1}} \left(\text{d}\sigma_{\text{NNLO}}^{\text{V},1} - \text{d}\sigma_{\text{NNLO}}^{\text{VS},1} \right) + \int_{\text{d}\Phi_{m+1}} \text{d}\sigma_{\text{NNLO}}^{\text{VS},1} \\ &+ \int_{\text{d}\Phi_{m}} \text{d}\sigma_{\text{NNLO}}^{\text{V},2} \end{split}$$

- ✓ Double real radiation
- ×Subtraction more IR limits:
 - several methods
 - how well can we automatize them? How efficient are they?
- **★1-Loop** calculation to higher epsilon and for unresolved particles:
 - Can in principle be computed with OLPs, which need potentially to be extended
- 2-Loop amplitudes:
 - hard to go beyond 2 to 2 for massless particles but work is in progress...

Loop-induced processes

- A first step towards NNLO: presence of 2-loop matrix elements but same IR complexity as NLO
- Nevertheless some first additional complications:
 - real radiation amplitude is 1-loop: challenge for numerical stability
 - virtual amplitude is 2-loop: in general very hard! More later..
 - phenomenologically relevant:
 - E.g. Higgs and double Higgs production:

Background, signal and interference @ NLO

Relevant for off-shell Higgs width measurements

400

500

600

 $m_{hh} \, [{\rm GeV}]$

700

800

900

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenck, Schubert, Zirke] [Heinrich, Jones, Kerner, Luisoni, Vryonidou]

300

NNLO Subtraction

- Double real radiation introduces several additional complications:
 - double soft / triple collinear configurations
- Several approaches:
- Antenna \rightarrow q_T - subtraction [Kosower; Gehrmann et al.] [Catani, Grazzini et al.] CoLoRFul N-jettiness [Somogyi et al.] [Gaunt et al.; Boughezal et al.] > Nested subtr. based on SD Residue-improved SD [Czakon et al.] [Caola et al.] Projection-to-Born

[Brucherseifer, Caola, Melnikov; Cacciari, Dreyer, Karlberg, Salam, Zanderighi]

- Can be categorized into 2 big families:
 - Local subtraction (as used for NLO)
 - Cancel divergences locally with counter term
 - ✓ Better convergence
 - Integrated subtraction terms can be hard to compute
 - Phase space slicing
 - Split phase space according to singular configuration and use NLO local subtraction for NLO-like singularities
 - ✓ Simpler to implement (from resummation)
 - ★ Large cancellation on cut-off check of slicing parameter dependence

2-loop amplitudes

- As it was for 1-loop 15 years ago, the bottleneck seems to be again the loop part
 - 2-loops computations available for 2 → 2 processes (massless internal particles)
 - Tools for the reduction of the loop amplitudes to coefficient x MIs:
 - > Highly nontrivial since no general MIs basis is known (contrary to 1 loop)

➤ Based on Integration-by-parts (IBPs) relations:

$$\int d^D k \frac{\partial}{\partial k^{\mu}} v^{\mu} f(k, p_i) = 0$$

Many promising developments in the last years

[Abreu, Badger, Febres Cordero, Feng, Huang, Frellesvig, Henn, Kosower, Ita, Jaquier, Larsen, Mastrolia, Mirabella, Mogull, Ossola, Papadopoulos, Page, Peraro, Primo, Zeng, Zhang, ...]

2-loop amplitudes

- Many techniques both analytical and numerical or semi-numerical
 - Direct integration [Feynman; t'Hooft, Veltman, ...; Brown; Panzer; Schnetz; v.Manteuffel, Panzer, Schabinger; ...]
 - Mellin-Barnes representation

[Kotikov; Remiddi; Gehrmann, Remiddi; Henn; ...]

Differential equations

[Argeri, Caola, Caron-Huot, Di Vita, Gehrmann, Grozin, Korchemsky, Henn, Lee, v.Manteuffel, Marquard, Mastrolia, Melnikov, Meyer, Mirabella, Papadopoulos, Primo, Schabinger, Schlenk, Schubert, Smirnov, Tancredi, Tommasini, Weihs, Wever, Yundin, ...]

Numerical solution of differential equations

[Caffo, Czyz, Laporta, Remiddi; Czakon, Mitov; ...]

Dispersion relation

[Bauberger et al.; Bauberger, Freitag; ...]

Via Bernstein-Sato-Tkachov theorem

[Passarino; Uccirati et al.; ...]

[Tausk; Smirnov; ...]

Numerical evaluation via Mellin-Barnes

[Czakon; Dubovyk, Freitas, Gluza, Riemann, Usovitsch;...]

Numerical extrapolation

[De Doncker, Yuasa, Kato, Fujimoto Kurihara, Ishikawa, Olagbemi, Shimizu]

Direct integration in momentum space

[Soper; Gong, Soper, Nagy; Weinzierl, Reuschle et al.;...]

Loop-tree duality

[Rodrigo, Buchta, Chachamis, Sborlini, Driencourt-Mangin et al.; ...]

Sector decomposition

[Hepp; Denner, Roth; Binoth, Heinrich; ...]

sector_decomposition

CSectors

Fiesta

SecDec/pySecDec

Talk by S. Jahn

[Bogner, Weinzierl]

[Gluza, Kajda, Riemann, Yundin] [Smirnov, Smirnov, Tentyukov]

[Borowka, Carter, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke]

Towards automation

Available tools for NNLO predictions

Some tools for dedicated NNLO predictions:

NNLOJET

Based on antenna subtraction

[Chen, Cruz-Martinez, Currie, Gehrmann, Gehrmann De-Ridder, Glover, Huss, Jaquier, Morgan, Pires]

MATRIX

Based on q_T-subtraction

[Grazzini, Kallweit, Rathlev, Wiesemann1

$$pp \to Z/\gamma^* (\to l^+ l^-)$$

$$pp \to W (\to l\nu)$$

$$pp \to H$$

$$pp \to \gamma\gamma$$

$$pp \to W\gamma \to l\nu\gamma$$

$$pp \to Z\gamma \to l^+ l^- \gamma$$

$$\begin{array}{ll} pp \to Z/\gamma^* \ \left(\to l^+ l^- \right) & pp \to ZZ \to 4\,l \\ pp \to W \ \left(\to l\nu \right) & pp \to WW \to l\nu l'\nu' \\ pp \to H & pp \to ZZ/WW \to ll\nu\nu \\ pp \to \gamma\gamma & pp \to WZ \to l\nu l'^+ l'^- \\ pp \to W\gamma \to l\nu\gamma & pp \to HH \end{array}$$

MCFM-NNLO

Based on N-jettiness

[Boughezal, Campbell, Ellis, Focke, Giele, Liu, Neumann, Petriello, Williams]

$$pp \to Z/\gamma^* (\to l^+ l^-)$$

$$pp \to W (\to l\nu)$$

$$pp \to H$$

$$pp \to \gamma\gamma$$

$$pp \to Z\gamma \to l^+ l^- \gamma)$$

$$pp \to HZ \to H l^+ l^-$$

$$pp \to HW \to H l\nu$$

Conclusions & Outlook

- NLO automation is a reality: many tools for several tasks
 - **NOT** everything is possible "out of the box" but many pheno-relevant computations can be performed in little time compared to 10-15 years ago
 - "Conceptually" solved although large multiplicity / multiscale calculations are still computationally very tough
 - Allows to produce precise NLO predictions also for BSM scenarios
- Experimental accuracy reached at LHC calls for NNLO predictions for several processes
 - Very active field of research: collective effort towards automation
 - Many challenges still ahead, but very fast progresses...
 ... how long for NNLO automation?

Conclusions & Outlook

- NLO automation is a reality: many tools for several tasks
 - **NOT** everything is possible "out of the box" but many pheno-relevant computations can be performed in little time compared to 10-15 years ago
 - "Conceptually" solved although large multiplicity / multiscale calculations are still computationally very tough
 - Allows to produce precise NLO predictions also for BSM scenarios
- Experimental accuracy reached at LHC calls for NNLO predictions for several processes
 - Very active field of research: collective effort towards automation
 - Many challenges still ahead, but very fast progresses...
 ... how long for NNLO automation?

