Jets, Boosted jets, FastJet

Grégory Soyez

IPhT, CEA Saclay

Tools 2017, Corfu, Greece.
May 04 2017
A Theorist’s view:

- Learn about fundamental interactions
- Produce standard model particles
Anatomy of collider physics

Experimental realm:

- Learn about fundamental interactions
- Observe energy deposits and charged tracks
Basic phenomenologist dictionary/view

<table>
<thead>
<tr>
<th>Th/Pheno</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell(e, \mu)$</td>
<td>$\ell(e, \mu)$</td>
</tr>
<tr>
<td>γ</td>
<td>γ</td>
</tr>
<tr>
<td>ν</td>
<td>missing E_T</td>
</tr>
<tr>
<td>q, g</td>
<td>???</td>
</tr>
</tbody>
</table>

| $W/Z/H/top/\tau/BSM/...$ | decay in the above |

- Quarks and gluons (i.e. partons) branch predominantly at small angles

\[
d\text{Prob}_{\text{branching}} \propto \alpha_s \frac{d\theta}{\theta}
\]

\[
\rightarrow \text{(mostly) collimated parton shower}
\]

- One does not observe partons but hadrons ($\pi, K, ...$)

\[
\rightarrow \text{collimated bunch of hadrons called “jets”}
\]
Basic phenomenologist dictionary/view

<table>
<thead>
<tr>
<th>Th/Pheno</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell(e, \mu)$</td>
<td>$\ell(e, \mu)$</td>
</tr>
<tr>
<td>γ</td>
<td>γ</td>
</tr>
<tr>
<td>ν</td>
<td>missing E_T</td>
</tr>
<tr>
<td>q, g</td>
<td>jets</td>
</tr>
</tbody>
</table>

at least within the context of this talk
at least within the context of this talk
not trivial at all... but not covered here
complex collimated structures
decay in the above
In the most simple terms:

\[\text{jet} \equiv \text{bunch of collimated particles} \approx (\text{hard/high-energy}) \text{ quark or gluon} \]
Measure jets \rightarrow access q/g \rightarrow learn about fundamental collision
Measure jets \rightarrow access q/g \rightarrow learn about fundamental collision

- Parton showers: require state-of-the-art (all-orders) perturbative QCD
- Hadronisation/UE: Non-pertur. effects: limit sensitivity to that
A bit of useful kinematics

[Both: ATLAS public events ($H \rightarrow 2\mu 2e$ & 4 jets)]

- **Rapidity y**: longitudinal component (along the beam axis)
- **Azimuthal angle ϕ**: around the beam axis
- **Transverse momentum p_t**: "energy" transverse to the beam
Jets 101
“Jets” ≡ bunch of collimated particles ≈ hard partons

How many jets?
“Jets” ≡ bunch of collimated particles ≈ hard partons

obviously 2 jets
“Jets” ≡ bunch of collimated particles ≈ hard partons

How many jets
“Jets” ≡ bunch of collimated particles ≈ hard partons

3 jets
Jets and partons

“Jets” ≡ bunch of collimated particles ≅ hard partons

3 jets... or 4?
Jets and partons

“Jets” ≡ bunch of collimated particles ≈ hard partons

3 jets... or 4?

- “collinear” is arbitrary
- “parton” concept strictly valid only at LO
Jet definition

Partons/Particles/Calorimeter towers/Tracks

Jet definition

Jet algorithm
Parameters

Jets
(Anti-\(k_t\)) algorithm

- From all the objects, define the distances
 \[d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \quad d_{iB} = p_{t,i}^{-2}R^2 \]

- repeatedly find the minimal distance
 - if \(d_{ij}\): recombine \(i\) and \(j\) into \(k = i + j\)
 - if \(d_{iB}\): call \(i\) a jet

- One parameters: \(R\) ("jet radius").

Notes

- **Different \(R\) at the LHC.** CMS: 0.5, 0.7, 0.4 (soon); ATLAS: 0.4, 0.6
- Several nice properties:
 - IRC-safe (i.e. can be computed theoretically in pQCD)
 - produces cone-like (circular) jets
 - fast
Recombination algorithms

(Anti-\(k_t\)) algorithm

- From all the objects, define the distances
 \[d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \quad d_{iB} = p_{t,i}^{-2}R^2 \]
- repeatedly find the minimal distance
 if \(d_{ij}\): recombine \(i\) and \(j\) into \(k = i + j\)
 if \(d_{iB}\): call \(i\) a jet
- One parameter: \(R\) ("jet radius").

Other algorithms

- "generalised-\(k_t\)"
 \[d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \quad d_{iB} = p_{t,i}^{2p}R^2 \]
- \(p = 1\): \(k_t\) algorithm (oldest in the family)
- \(p = 0\): Cambridge/Aachen algorithm ("just" angular ordering)
The anti-k_t jets

Main property of anti-k_t: hard jets are circular
FastJet

http://fastjet.fr
Software for jet clustering

- Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles
Software for jet clustering

- Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles
- Now: (anti-)k_t very fast: $\mathcal{O}(N^2)$ or even $\mathcal{O}(N \log(N))$
Software for jet clustering

- Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles
- Now: (anti-) k_t very fast: $\mathcal{O}(N^2)$ or even $\mathcal{O}(N \log(N))$
- Fastjet 3.1: typically 5-50ms at the LHC
Geometrical (Camb./Aachen) case: Naive approach

- compute all d_{ij}: N^2
- find minimum: N^2
- recombine $i + j$: 1
- iterate: $\times N$
- total: $O(N^3)$

- works for all algs
- prohibitively slow
Observations:

- No need to keep track of all the distances:
 \[\min_{i,j}\{d_{ij}\} = \min_i\{d_{i,\text{NN}(i)}\} \]
 with \(\text{NN}(i) = \min_j\{d_{ij}\} \)
 only keep track of the nearest neighbour (NN) of each particle

- Do not recalculate all NNs at each step; if \(i + j \rightarrow k \), we need \(\text{NN}(k) \) and \(\text{NN}(\ell) \) when \(\text{NN}(\ell) = i \) or \(j \)
Geometrical (Camb./Aachen) case: Nearest neighbours

Observations:
- No need to keep track of all the distances:
 \[\min_{i,j}\{d_{ij}\} = \min_i\{d_{i,NN(i)}\} \quad \text{with} \quad NN(i) = \min_j\{d_{ij}\} \]
 only keep track of the nearest neighbour (NN) of each particle
- Do not recalculate all NNs at each step; if \(i + j \rightarrow k \), we need \(NN(k) \) and \(NN(\ell) \) when \(NN(\ell) = i \) or \(j \)

New implementation:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init: compute all (NN(i))</td>
<td>(N^2)</td>
</tr>
<tr>
<td>find smallest (d_{i,NN(i)})</td>
<td>(N)</td>
</tr>
<tr>
<td>recombine (i + j)</td>
<td>1</td>
</tr>
<tr>
<td>compute (NN(k)) and (NN(\ell))'s</td>
<td>(N)</td>
</tr>
<tr>
<td>iterate</td>
<td>(\times N)</td>
</tr>
<tr>
<td>total</td>
<td>(\mathcal{O}(N^2))</td>
</tr>
</tbody>
</table>

- works for all algs
- efficient for \(N \) not too large
Geometrical (Camb./Aachen) case: Tiling

- \(N\)N only in current or neighbouring tile
- \(\Rightarrow\) \(N\)N search is \(\mathcal{O}(n = N/N_{\text{tiles}})\)
Geometrical (Camb./Aachen) case: Tiling

Init: create tiling \(N \)

Init: compute all \(NN(i) \) \(Nn \)

Init: sort the \(d_{i,NN(i)} \) \(N \log(N) \)

- find smallest \(d_{i,NN(i)} \) \(1 \)
- recombine \(i + j \) \(1 \)
- compute \(NN(k) \) and \(NN(\ell) \)'s \(n \)

iterate \(\times N \)

total \(\mathcal{O}(Nn) \)

- \(NN \) only in current or neighbouring tile
- \(\Rightarrow NN \) search is \(\mathcal{O}(n = N/N_{\text{tiles}}) \)
Geometrical (Camb./Aachen) case: Tiling

Init: create tiling

Init: compute all $NN(i)$

Init: sort the $d_{i,NN(i)}$

Find smallest $d_{i,NN(i)}$

Recombine $i + j$

Compute $NN(k)$ and $NN(\ell)$'s

Iterate

Total

N

Nn

$N \log(N)$

1

1

n

$\times N$

$\mathcal{O}(Nn)$

- NN only in current or neighbouring tile
- \Rightarrow NN search is $\mathcal{O}(n = N/N_{\text{tiles}})$
- Valid for Cambr./Aachen ($d_{ij} = \Delta R_{ij}^2$)
- Variants for finding $\min\{d_{i,NN(i)}\}$
- Tricks to avoid neighbour tiles when possible
Geometrical (Camb./Aachen) case: Tiling

- **Init: create tiling**
- **Init: compute all** $NN(i)$
- **Init: sort the** $d_{i,NN(i)}$
- **find smallest** $d_{i,NN(i)}$
- **recombine** $i + j$
- **compute** $NN(k)$ and $NN(\ell)$’s
- **iterate**

<table>
<thead>
<tr>
<th>Step</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create tiling</td>
<td>N</td>
</tr>
<tr>
<td>Compute all $NN(i)$</td>
<td>Nn</td>
</tr>
<tr>
<td>Sort the $d_{i,NN(i)}$</td>
<td>$N \log(N)$</td>
</tr>
<tr>
<td>Find smallest $d_{i,NN(i)}$</td>
<td>1</td>
</tr>
<tr>
<td>Recombine $i + j$</td>
<td>1</td>
</tr>
<tr>
<td>Compute $NN(k)$ and $NN(\ell)$’s</td>
<td>n</td>
</tr>
<tr>
<td>Iterate</td>
<td>$\times N$</td>
</tr>
<tr>
<td>Total</td>
<td>$O(Nn)$</td>
</tr>
</tbody>
</table>

- NN only in current or neighbouring tile
- \Rightarrow NN search is $O(n = N/N_{\text{tiles}})$
- Valid for Cambr./Aachen ($d_{ij} = \Delta R_{ij}^2$)
- Variants for finding $\min\{d_{i,NN(i)}\}$.
- Tricks to avoid neighbour tiles when possible

- **Optimal for** $30 \lesssim N \lesssim 5 \times 10^5$
Other algorithms

What about \(d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \Delta R_{ij}^2 \) ?
Other algorithms

What about \(d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \Delta R_{ij}^2 \) ?

FastJet lemma

If the pair \((i, j)\) minimises \(d_{ij} \) and \(p_{ti}^{2p} < p_{tj}^{2p} \), then \(j \) is the geometrical NN of \(i \).

Proof: Assume there is \(k \) s.t. \(\Delta R_{ik} < \Delta R_{ij} \). We would have

\[
d_{ik} = \min(p_{ti}^{2p}, p_{tk}^{2p}) \Delta R_{ik}^2 < p_{ti}^{2p} \Delta R_{ij}^2 = d_{ij},
\]

a contradiction.
Other algorithms

What about \(d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \Delta R_{ij}^2 \)?

FastJet lemma

If the pair \((i, j)\) minimises \(d_{ij}\) and \(p_{ti}^{2p} < p_{tj}^{2p}\), then \(j\) is the geometrical NN of \(i\).

Proof: Assume there is \(k\) s.t. \(\Delta R_{ik} < \Delta R_{ij}\). We would have

\[
d_{ik} = \min(p_{ti}^{2p}, p_{tk}^{2p}) \Delta R_{ik}^2 < p_{ti}^{2p} \Delta R_{ij}^2 = d_{ij},
\]

a contradiction.

⇒ all the above strategy (working with geometrical NN) work
Main FastJet classes

Basic classes:

- **PseudoJet**: particle/4-vector
- **JetDefinition**: jet definition for the clustering (alg+params)
- **ClusterSequence**: the jet clustering itself
Main FastJet classes

Basic classes:
- **PseudoJet**: particle/4-vector
- **JetDefinition**: jet definition for the clustering (alg+params)
- **ClusterSequence**: the jet clustering itself

More advanced classes:
- **Selector**: various cuts, e.g. `SelectorPtMin(100)`
- **Transformer**: base class for manipulating jets, e.g. `MassDropTagger`, `Subtractor`, ...
- **AreaDefinition** and **ClusterSequenceArea**: includes jet area calculation in the clustering

consult the FastJet examples, manual, FAQ and doxygen documentation for help
Basic FastJet example

```cpp
#include <iostream>
#include "fastjet/ClusterSequence.hh"
using namespace fastjet;
using namespace std;

int main() {
    vector<PseudoJet> particles; // px   py   pz   E
    particles.push_back( PseudoJet( 99.0, 0.1, 0, 100.0) );
    particles.push_back( PseudoJet( 4.0, -0.1, 0, 5.0) );
    particles.push_back( PseudoJet( -99.0, 0, 0, 99.0) );

    // choose a jet definition          R
    JetDefinition jet_def(antikt_algorithm, 0.7);

    // run the clustering, extract the jets
    ClusterSequence cs(particles, jet_def);
    vector<PseudoJet> jets = sorted_by_pt(cs.inclusive_jets());
    cout << "hardest jet: pt=" << jets[0].pt() << endl;
    return 0;
}
```
Additional tricks

- The `ClusterSequence` can often be kept hidden

```cpp
vector<PseudoJet> jets = jet_def(particles); // pt-sorted
```

- The jets know about their clustering structure

```cpp
// the jet constituents
vector<PseudoJet> constituents = jet.constituents();

// clustering information
PseudoJet j1, j2;
if (jet.has_parents(j1, j2))
  cout << "Jet obtained by recombining ..." << endl;

// access to the underlying ClusterSequence (if still on scope)
ClusterSequence *cs = jet.associated_cluster_sequence();
```

- A `PseudoJet` has a `user_index` and can be associated a `UserInfo`
Boosted jets
Massive object X decaying to hadrons

$$\theta \sim \frac{m_X}{p_t} \frac{1}{\sqrt{z(1 - z)}}$$

boosted X \hspace{1cm} single jet

\hspace{1cm} (1-z)
Boosted jets: main idea

Massive object X decaying to hadrons

If $p_t \gg m$, reconstructed as a single jet

How to disentangle that from a QCD jet?

$$\theta \sim \frac{m_X}{p_t} \frac{1}{\sqrt{z(1-z)}}$$
An illustration

What jet do we have here?
What jet do we have here?

- a quark?
What jet do we have here?

- a quark?
- a gluon?
What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
An illustration

What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?
What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate
An illustration

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

Source: ATLAS boosted top candidate

Paradigm shift: a jet can be more than a quark or gluon
Many applications: (examples)

- 2-pronged decay: \(W/Z \rightarrow q\bar{q}, H \rightarrow b\bar{b} \)
- 3-pronged decay: \(t \rightarrow qqb, \tilde{\chi} \rightarrow qqq \)
Boosted jets: why is this interesting?

Many applications: (examples)

- 2-pronged decay: $W/Z \rightarrow q\bar{q}, H \rightarrow b\bar{b}$
- 3-pronged decay: $t \rightarrow qqb, \tilde{\chi} \rightarrow qqq$

Increasingly important:

- Increasing LHC energy
- Increasing bounds/scales
- More-and-more discussions about yet higher-energy colliders

More and more boosted jets
Needs to be under control
Looking at the jet mass is not enough

Graph:
- **Z+jet**
- **Z+W** (x20)

- **LHC14, Pythia8**
- **Z→μμ**
- **anti-kt(R=0.8)**
- **p_t>400 GeV**
A lot of activity since 2008

Many tools introduced since 2008:

(modified) mass drop; filtering, trimming, pruning; (recursive/iterated)
soft drop, $Y(m)$-splitter; N-subjettiness, planar flow, energy correlations,
pull, dichroic ratios; Q-jets, ScJets; shower deconstruction; template
methods; Johns Hopkins top tagger, HEPTopTagger, CASubjet tagging; ...
A lot of activity since 2008

Many tools introduced since 2008:

(modified) mass drop; filtering, trimming, pruning; (recursive/iterated) soft drop, $Y(m)$-splitter; N-subjettiness, planar flow, energy correlations, pull, dichroic ratios; Q-jets, ScJets; shower deconstruction; template methods; Johns Hopkins top tagger, HEPTopTagger, CASubjet tagging; ...

Idea 1:

Find $N = 2, 3, \ldots$ hard cores

Works because different splitting

QCD jets: $P(z) \propto 1/z$

\Rightarrow dominated by soft emissions

\Rightarrow “single” hard core
A lot of activity since 2008

Many tools introduced since 2008:
(modified) mass drop; filtering, trimming, pruning; (recursive/iterated) soft drop, $Y_{(m)}$-splitter; N-subjettiness, planar flow, energy correlations, pull, dichroic ratios; Q-jets, ScJets; shower deconstruction; template methods; Johns Hopkins top tagger, HEPTopTagger, CASubjet tagging; ...

Idea 1:
Find $N = 2, 3, \ldots$ hard cores

Works because different splitting
QCD jets: $P(z) \propto 1/z$
⇒ dominated by soft emissions
⇒ “single” hard core

Idea 2:
Constrain radiation patterns

Works because different colours
Radiation pattern is different for
- colourless $W \rightarrow q\bar{q}$
- coloured $g \rightarrow q\bar{q}$
Two-prong finder: MassDrop ($z_{\text{cut}} = 0.1$) + filtering

[J. Butterworth, A. Davison, M. Rubin, G. Salam, 08]

Grégory Soyez (IPhT, CEA Saclay)
Two-prong finder: MassDrop \((z_{\text{cut}} = 0.1) \) + filtering

[J. Butterworth, A. Davison, M. Rubin, G. Salam, 08]
Two-prong finder: MassDrop ($z_{\text{cut}} = 0.1$) + filtering

MassDrop

- undo the last clustering step until $z > z_{\text{cut}}$
- $z = 0.016 < 0.1$ carry on
Two-prong finder: MassDrop \((z_{\text{cut}} = 0.1) + \text{filtering}\)

\[z > z_{\text{cut}}\]

\[z = 0.41 > 0.1\]

stop

MassDrop

undo the last clustering step until

\[z > z_{\text{cut}}\]

\[z = 0.41 > 0.1\]

stop

Drop step 2; Delta R = 0.87699; \(p_{t1}=146.636\); \(m_{1}=52.3423\); \(p_{t2}=102.622\); \(m_{2}=27.7967\)
Two-prong finder: MassDrop ($z_{\text{cut}} = 0.1$) + filtering

MassDrop
- undo the last clustering step until $z > z_{\text{cut}}$
- $z = 0.41 > 0.1$ stop

Filter
- recluster
Two-prong finder: MassDrop \((z_{\text{cut}} = 0.1)\) + filtering

MassDrop

- undo the last clustering step until \(z > z_{\text{cut}}\)
- \(z = 0.41 > 0.1\) stop

Filter

- recluster
- keep 3 hardest

[J.Butterworth, A.Davison, M.Rubin, G.Salam, 08]
Two-prong finder: \textbf{MassDrop} \((z_{\text{cut}} = 0.1) +\) filtering

\begin{itemize}
 \item MassDrop
 \begin{itemize}
 \item undo the last clustering step until \(z > z_{\text{cut}}\)
 \item \(z = 0.41 > 0.1\) stop
 \end{itemize}
 \item Filter
 \begin{itemize}
 \item recluster
 \item keep 3 hardest
 \end{itemize}
\end{itemize}

\textbf{Variant}: \textbf{SoftDrop}: impose \(z > z_{\text{cut}} \theta^\beta\)

\cite{10.1007/JHEP01(2012)115,10.1140/epjc/s10052-017-4822-9}
MassDrop for $H \rightarrow b\bar{b}$ searches

This is the kind of Higgs reconstruction one would get

(d)

SN/$\sqrt{B} = 5.9$
in 112-128GeV
Boosted jets

What do we do with all these methods?
excess observed for a dijet invariant mass around 2 TeV in the WW channel ($X \rightarrow WW \rightarrow$ jets)

- $m_X \approx 2$ TeV \Rightarrow boosted W jets

This was with 8 TeV data (20 fb$^{-1}$). Gone with more stat in 13 TeV data
Low-mass resonance search

[arXiv:1705.10532 (CMS)]

- Search for $X \to q\bar{q}$
- Use high-p_t jets
- Look for substructure
Low-mass resonance search

Search for $X \rightarrow q\bar{q}$
Use high-p_t jets
Look for substructure
first direct exclusion for $100 < m < 140$ GeV
$H \rightarrow b\bar{b}$ measurement

- Look for substructure (and double b-tag) in high-p_T jets
- 5.1σ evidence for $Z \rightarrow b\bar{b}$
- 1.5σ evidence for $H \rightarrow b\bar{b}$
Recent theory progress

Understanding of substructure from QCD first-principles

First analytic understanding of jet substructure:

Monte Carlo

Jet mass: m [GeV], for $p_t = 3$ TeV

- Trimmer ($z_{cut}=0.05, R_{sub}=0.3$)
- Pruner ($z_{cut}=0.1$)
- MDT ($y_{cut}=0.09, \mu=0.67$)

Analytics

Jet mass: m [GeV], for $p_t = 3$ TeV

- Plain jet mass
- Trimmer ($z_{cut}=0.1, R_{sub}=0.2$)
- Pruner ($z_{cut}=0.1$)
- MDT ($y_{cut}=0.09, \mu=0.67$)

- Similar behaviour at large mass/small boost
- Significant differences at larger boost
- Improved methods: mMDT and Y-pruning
Tools: who? where?

<table>
<thead>
<tr>
<th>Tool</th>
<th>Who</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>hline Mass-Drop</td>
<td>†Butterworth, Davison, Rubin, Salam</td>
<td>fj::MassDropTagger</td>
</tr>
<tr>
<td></td>
<td>†Dasgupta, Fregoso, Marzani, Salam</td>
<td>fj::contrib::ModifiedMassDropTagger</td>
</tr>
<tr>
<td></td>
<td>†Butterworth, Davison, Rubin, Salam</td>
<td>fj::Filter</td>
</tr>
<tr>
<td>Filtering</td>
<td>†Krohn, Thaler, Wang</td>
<td>fj::Filter</td>
</tr>
<tr>
<td>Trimming</td>
<td>†Ellis, Vermilion, Walsh</td>
<td>fj::Pruner</td>
</tr>
<tr>
<td>Pruning</td>
<td>†Larkoski, Marzani, Soyez, Thaler</td>
<td>fj::contrib::SoftDrop</td>
</tr>
<tr>
<td>SoftDrop</td>
<td>†Thaler, Van Tilburg, Vermilion, Wilkinson</td>
<td>fj::contrib::Nsubjettiness</td>
</tr>
<tr>
<td>N-subjettiness</td>
<td>†Jihun Kim</td>
<td>fj::RestFrameNSubjettinessTagger</td>
</tr>
<tr>
<td>Energy correlations</td>
<td>†Larkoski, Salam, Thaler</td>
<td>fj::contrib::EnergyCorrelator</td>
</tr>
<tr>
<td>Variable R</td>
<td>†Krohn, Thaler, Wang</td>
<td>fj::contrib::VariableR</td>
</tr>
<tr>
<td>ScJets</td>
<td>†Tseng, Evans</td>
<td>fj::contrib::VariableR</td>
</tr>
<tr>
<td>Johns Hopkins top tag</td>
<td>†Kaplan, Rehermann, Schwartz, Tweedie</td>
<td>fj::JHTopTagger</td>
</tr>
<tr>
<td>Jets without jets</td>
<td>†Bertolini, Chan, Thaler</td>
<td>fj::contrib:::...</td>
</tr>
<tr>
<td>CASubjet tagging</td>
<td>†Salam</td>
<td>fj::CASubJetTagger</td>
</tr>
<tr>
<td>Y-splitter</td>
<td>†Butterworth, Cox, Forshaw</td>
<td>fj::ClusterSequence::exclusive_submerge()</td>
</tr>
<tr>
<td>Y-splitter+grooming</td>
<td>†Dasgupta, Schunk, Soyez</td>
<td>combination of others</td>
</tr>
<tr>
<td>Planar flow</td>
<td>†Almeida, Lee, Perez, Sterman, Sung, Virzi</td>
<td>3rd party</td>
</tr>
<tr>
<td>Pull</td>
<td>†Gallicchio, Schwartz</td>
<td>3rd party</td>
</tr>
<tr>
<td>Q-jets</td>
<td>†Ellis, Hornig, Krohn, Roy and Schwartz</td>
<td>3rd party</td>
</tr>
<tr>
<td>HEPTopTagger</td>
<td>†Plehn, Salam, Spannowsky, Takeuchi</td>
<td>3rd party</td>
</tr>
<tr>
<td>TemplateTagger</td>
<td>†Backovic, Juknevic, Perez</td>
<td>3rd party</td>
</tr>
<tr>
<td>Shower deconstruction</td>
<td>†Soper, Spannowsky</td>
<td>3rd party</td>
</tr>
</tbody>
</table>

1 References are incomplete