
FROM COMPACT OBJECTS TO
QUASI-NORMAL MODES AND BACK

PHD PROJECT OF: SEBASTIAN H. VÖLKEL1, SUPERVISOR: KOSTAS D. KOKKOTAS

THEORETICAL ASTROPHYSICS, IAAT, TÜBINGEN, GERMANY

INTRODUCTION
Studying compact relativistic objects is of great interest these days. The
groundbreaking discovery of gravitational waves by LIGO [1] opens not
only a completely new window to relativistic astrophysics, but also to novel
fundamental tests of gravity [2]. Compact objects are the most promising
gravitational wave sources and therefore the ideal laboratory for
theoretical and observational studies.

My PhD project is dedicated to the semi-analytic study of such objects,
with focus on the quasi-normal modes of their spacetime. They are an
interesting tool to connect theory with future observations.

OVERVIEW

1. COMPACT OBJECTS

•Most studied compact objects are black holes and neutron stars in general
relativity, but there could be room for more:

◦ Alternative models for ultra compact objects, e.g. gravastars.

◦ Alternative theories of gravity or quantum gravitational modifications.

◦ Recent possible detection of “echoes” in LIGO data?

•Many of them make predictions in the gravitational wave sector.

2. QUASI-NORMAL MODES

•Quasi-normal modes are a special class of perturbations [3].

•For gravitational waves study metric perturbations: gnew
µν = gknown

µν + hpert.
µν .

• Insert perturbed metric gnew
µν in linearized field equations.

•For non-rotating and spherically symmetric systems one finds

d2

dr∗2Ψ(r∗) + (En − V (r∗))Ψ(r∗) = 0,

with ωn =
√

En being the eigenvalues and V (r∗) an effective potential.
•Quasi-normal modes ωn are defined by special boundary conditions.

•V (r∗) and ωn of black holes differ significantly from alternative objects.

DIRECT PROBLEM:V (x )→ En

•Direct problem: get the spectrum En from the potential V (x).
•Bohr-Sommerfeld (BS) methods can be used for analytic studies.

•Not exact, but powerful and simplified analytic framework.
•For quasi-stationary states it is given by∫ x1
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√
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En − V (x)dx

)
,

with xi being the classical turning points, En = V (xi).
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Fig. 1 : Typical potential for quasi-stationary states,
areas are “related” to BS integrals.
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Fig. 2 : Axial mode potential for constant density stars
with different R/M and l .

INVERSE PROBLEM: En → V (x )
• Inverse problem: reconstruct the potential V (x) from the spectrum En.

•Usually much harder to solve and seldom unique, if well posed at all.
•Combination of semi-classical techniques [4, 5] allow reconstruction of

L1(E) = 2
∂

∂E

∫ E

Emin

n(E ′) + 1/2
√

E − E ′
dE ′, L2(E) = −

1
π

∫ Emax

E

(dT (E ′)/dE ′)

T (E ′)
√

E ′ − E
dE ′.
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Fig. 3 : Potential with corresponding spectrum En.
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Fig. 4 : Spectrum for a potential shown in Fig. 3.

RESULTS

We tested the methods by studying each of the problems for constant
density stars and gravastars in two separate works [6, 7].

1. DIRECT PROBLEM

•Developed/solved a full analytic
toy model for very simple and
useful approximations of the
trapped ωn.

•Numerically studied a correction
to the real part which also im-
proves the imaginary part.

•Results agree very well with pre-
cise full numerical values.
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Fig. 5 : Trapped ωn of a constant density star with
R/M = 2.26 and l = 2 from different methods.

2. INVERSE PROBLEM

•Constructed the widths L1(E) and
L2(E) from different spectra using
inter-/extrapolation.

•Birkhoff’s theorem yields unique
solution for the reconstructed po-
tential.

•Precision increases with the num-
ber of trapped modes ωn in the po-
tential.
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Fig. 6 : Reconstructed and exact axial mode potential
of a constant density star with R/M = 2.26 and l = 3.

CONCLUSIONS
• Bohr-Sommerfeld/WKB methods are useful tools in the semi-analytic

study of gravitational perturbations from compact objects.

•They can be used to calculate the trapped quasi-normal modes [6]
and to reconstruct the perturbation potential [7].

•A first parameter estimation of ultra compact objects using gravita-
tional waves is discussed in [8].
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