Stability of Differentially Rotating Neutron Stars
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Introduction

The most famous result in the context of stability of rela-
tivistic stars is the turning-point criterion [1|, from which
follows that along a sequence of non-rotating neutron stars
with constant angular momentum the models to the high-
density side of the sequence’s maiximum are secularly un-
stable, while the ones on the low-density side are stable
equilibrium solutions. In Ref. [2] was found that for uni-
formly rotating neutron stars this criterion is just a suf-
ficient, but not a necessary one. The onset of dynamical
instability is marked by the neutral-stability line, which
coincides with the turning-point for non-rotating stars and
1s shifted to the low-density side with increasing angular
momentum.

Simulations of binary neutron star mergers have shown
that the merger remnant is a differentially rotating neu-
tron star [3|. The stability properties of such stars are
still unknown. The aim of this work is therefore to find
the onset of instability for differentially rotating models by
dynamically evolving selected models in full GR.

Selected Models

The models to be evolved are differentially rotating neu-
tron stars using the j-constant law

F(Q) = A2(Q. — Q)

and a polytropic EOS with K = 100 and I' = 2.0. The
models are chosen for a moderate degree of differential ro-
= 5.0 and close to their respective turning-
points. Their position in the M — p. plain is shown in
figure 1. An unstable equilibrium solution does not neces-
sarily collapse to a black hole, but might also migrate to a
stable solution depending on the direction of the truncation
error. Therefore, the initial models have been perturbed
by slighlty reducing their angular velocity (02 ~ 0.5%),
which ensures that an unstable solution does collapse.

tation A/r.

Numerical Setup

The initial data is constructed by the RNSID code [4|. This
and the subsequently mentioned codes are implemented in
the Einstein Toolkit [5|. From the initial data the nec-
essary quantities of the 3 + 1 formalism are computed and
mapped onto a Cartesian grid. Fixed mesh refinement is
used, which is provided by the Carpet driver [6|. The two
refinement levels have grid resolutions of dh; = 0.2Mg
(~ 295m), and dhy = 0.4Mg (~ 589m), respectively, with
the boundary at 12Ms (~ 17.7km) and at twice that dis-
tance. In order to save computation time the neutron star’s
symmetry is exploited and a reflection symmetry across the
2 = 0 plane is adopted.

The spacetime is evolved by the fourth-order finite-
differencing code McLachlan |7]|. In this code the equations
of the CCZ4-formulation are solved using 1+log slicing and
the Gamma-driver condition for the shift. The evolution of
the hydrodynamic quantities is done by the high-resolution
shock-capturing WhiskyTHC code [8, 9| employing an ideal
EOS with v = 2. This code implements the equations of
general-relativistic hydrodynamics in the conservative Va-
lencia formulation [10] and solves them using a fourth-order
finite-differencing scheme. The flux reconstruction is done
by a monotonicity preserving scheme that is of fifth order
in space. The time evolution of the coupled set of hydro-
dynamics and Einstein equations is done by the thorn MoL
using a CFL number of 0.15.

During the simulation the AHFinderDirect thorn [11] de-

tects apparent horizons and hence the formation of a black
hole.

Results

In figure 1 the selected models are presented as open circles, which are red in the case
of collapse and green otherwise. It is evident that the onset of dynamical instability sets
in on the low-density side of the turning-point and moves further from it with increasing
angular momentum. This agrees well with the known neutral-stability line for uniformly
rotating neutron stars [2].
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Figure 1: Equilibria of differentially rotating neutron stars. Shown is the gravitational mass M over the
central rest-mass density p.. The lower black line corresponds to the non-rotating models, colored lines
to sequences with constant angular momentum and the upper black line to the mass-shedding limit. Also
shown are the turning points (black dots) and the selected models (open circles).

Figure 2 shows the evolution of the central rest-mass density for a sequence of angular
momentum J = 1.0. The collapse of unstable models is evident from the divergence of the
rest-mass density, while for stable models it oscillates around the value of the corresponding
equilibrium solution. This oscillation is induced by the initial perurbation. The picture
looks qualitatively the same for all the J = const. sequences.
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Figure 2: Time evolution of the central rest-mass density p.(t) normalized to its initial value p.(0).
The lines correspond to seven models with angular momentum J = 1.0 and different initial values of p..
For collapsing models the evolution is shown until the first detection of an apparent horizon (red dots).

Conclusion and Outlook

For the analysed models it is evident that the onset of dynamical instability sets in on the
low-density side of the turning-point and moves further from it with increasing angular
momentum. This agrees well with the known neutral-stability line for uniformly rotating
neutron stars |2|. The equilibrium solutions are all of type A according to the classification
in Ref. [12]|. A similar study is yet to be done for more extreme configurations (types B,
C and D). In Ref. |3], however, was shown that the differentially rotating merger remnant
has a rotation profile very different to the monotonically decreasing one obtained by using
the j-constant law. Hence, a stability analysis should be done for equilibrium solutions,
which are constructed with a rotation law that yields a more realistic rotation profile.
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