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Mass and radius constraints for neutron stars
from pulse shape modeling
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Abstract
We present a framework that can be used to constrain masses and radii of neutron stars. The method is suitable for accreting millisecond pulsars, where a rapidly rotating neutron star accretes
matter from a relatively low mass companion star onto the magnetic poles of the neutron star. We model the exact shape of the resulting pulses using Schwarzschild-Doppler approximation, which
takes the general and special relativistic effects into account. We consider also the geometrical effects due to the oblate shape of the neutron star. By using Bayesian analysis and a Monte Carlo
sampling method, called ensemble sampler, we obtain probability distributions for the different parameters of our model, especially for the mass and the radius. To test the robustness of our
method, we have generated synthetic data and fitted the resulting pulse profiles. In the same way, simulations are currently being performed also for the real observations of SAX J1808.4 − 3658 .
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Figure 1: Geometry of the rotating pulsar with one hot spot. The angles shown
are observer inclination i, spot colatitude θ, and phase angle of the rotation φ.
Our pulse profiles are computed taking into account the special relativistic
effects (Doppler boost, relativistic aberration) as well as general relativistic
effects, such as gravitational redshift and light bending in the Schwarzschild
geometry (see e.g., Poutanen & Beloborodov (2006) and Poutanen & Gierliński
(2003)). The geometrical effects of the oblate shape of the star, due to the fast
rotation, are also taken into account (see e.g., Morsink et al. (2007) and
AlGendy & Morsink (2014)).
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Figure 2: We approximate the spectrum with an empirical Comptonization model
called SIMPL (Steiner et al. 2009). In this model a fraction of photons in a seed
blackbody spectrum (red curve) is scattered into a power-law component (blue
curve). Some photons remain thermal (orange curve). Figure shows the
corresponding spectra with temperature of the seed spectrum T = 2.0 keV,
scattered fraction of photons Xsc = 0.8, and photon spectral index of the
Comptonized component Γ = 1.8.
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Figure 3: Pulse profile histograms for energy fluxes integrated over three energy
intervals. Synthetic data is shown with blue crosses. The fluxes are normalized
to the mean of the synthetic data. The dashed contour shows a 68% and the
solid contour a 95% highest posterior density credible region.
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Figure 4: Angular distribution of radiation (beaming pattern) I(α), where α is the
emission angle relative to the surface normal. Distributions are shown with
different linear beaming parameters abb, defined as I(α) = I0(1 + abb cosα)

(normalized so that 2
∫ 1

0 µI(µ)dµ = 1, where µ = cosα). When fitting pulse
profiles, we use abb = 0 (isotropic intensity) for blackbody component of the
spectrum and varying abb for Comptonized component of the spectrum (see
Figure 2 for the energy-dependency of intensity).

1 Introduction
The aim of this work is to constrain masses and radii for neutron stars by fitting
waveform models to the X-ray oscillations of accretion-powered millisecond pul-
sars (AMP). These oscillations are produced when the neutron star is accreting
matter, via an accretion disc, from a non-collapsed low-mass companion star in
a binary system. Gas from the disc is channeled onto the magnetic poles of the
rapidly rotating neutron star due to the strong magnetic field. The result is a pair
of ”hot spots” on the pulsar surface. This gives rise to the X-ray pulsations with
typical periods of a few milliseconds corresponding to the spin frequency of the
neutron star. The pulses carry information about the mass and radius of a neu-
tron star since e.g., the light bending and thus the pulse shape strongly depends
on the compactness of the star.

2 Methods
We trace the photons from the hot spot to the observer by using ”oblate
Schwarzschild-Doppler” approximation (see Figure 1). In addition to the shape
of the light curve, we also model both the energy and angular distribution of the
radiation (see Figures 2 and 4). We then apply Bayesian analysis and ensemble
sampling method (Goodman & Weare 2010) to obtain probability distributions
for all parameters in our model. As a first step, we have created synthetic data
resembling the observations of SAX J1808.4 − 3658 observed with RXTE satellite.
Simulations are currently being performed also to the real observations. Previ-
ously, Bayesian analysis for synthetic data on X-ray burst oscillations has been
applied by e.g., Lo et al. (2013) and Miller & Lamb (2015), but with less physical
flexibility in the model.

3 Results
In Figure 3, we see that our simulation is able to reproduce the original syn-
thetic pulse profile closely. In Figure 5, are presented the posterior probability
distributions using synthetic data for equatorial radius Req, mass M , observer in-
clination i, spot colatitude θ, spot angular radius ρ, distance D, linear beaming
factor abb, photon spectral index Γ, scattered fraction of photons from blackbody
to Compton spectrum Xsc, temperature of the seed spectrum of the spot T , intrin-
sic scatter of the model σi, and neutral hydrogen column density for interstellar
absorption NH. To improve the performance of our sampling, we have used i+ θ,
i − θ, and M/Req as our parameters instead of i, θ, and Req. As expected, we
find degeneracies between some of the parameters and bimodality in i and θ.
However, the results show that we are able to get meaningful constraints for the
mass and radius, as well as for the binary system parameters like i, and for the
radiative parameters like beaming factor abb.
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Figure 5: The dark orange color shows a 68% and the light orange color a 95% highest posterior density credible interval. In the 2D posterior distributions the solid contour shows
a 95% and the dashed contour a 68% highest posterior density credible region. The blue crosses show the correct solution.


