Turun yliopisto
University of Turku

Mass and radius constraints for neutron stars from pulse shape modeling

Tuomo Salmi ${ }^{1}$, Joonas Nättilä ${ }^{1,2}$ and Juri Poutanen ${ }^{1,2}$

${ }^{1}$ University of Turku, Tuorla observatory, Department of Physics and Astronomy, FI-21500 Piikkiö, Finland
Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden e-mail: thjsal@utu.fi

Abstract

We present a framework that can be used to constrain masses and radii of neutron stars. The method is suitable for accreting millisecond pulsars, where a rapidly rotating neutron star accretes matter from a relatively low mass companion star onto the magnetic poles of the neutron star. We model the exact shape of the resulting pulses using Schwarzschild-Doppler approximation, which takes the general and special relativistic effects into account. We consider also the geometrical effects due to the oblate shape of the neutron star. By using Bayesian analysis and a Monte Carlo sampling method, called ensemble sampler, we obtain probability distributions for the different parameters of our model, especially for the mass and the radius. To test the robustness of our method, we have generated synthetic data and fitted the resulting pulse profiles. In the same way, simulations are currently being performed also for the real observations of SAX J1808.4 - 3658

Figure 1: Geometry of the rotating pulsar with one hot spot. The angles shown are observer inclination i, spot colatitude θ, and phase angle of the rotation ϕ. Our pulse profiles are computed taking into account the special relativistic
effects (Doppler boost, relativistic aberration) as well as general relativistic effects (Doppler boost, relativistic aberration) as well as general relativistic
effects, such as gravitational redshift and light bending in the Schwarzschild
 (2003)). The geometrical effects of the oblate shape of the star due to the fast rotation are also taken into account (see e.g., Morsink et al. (2007) and AlGendy \& Morsink (2014)).

Figure 2: We approximate the spectrum with an empirical Comptonization model called SIMPL (Steiner et al. 2009). In this model a fraction of photons in a seed blackbody spectrum (red curve) is scattered into a power-law component (blue curve). Some photons remain thermal (orange curve). Figure shows the scattered fraction of photons $X_{\mathrm{sc}}=0.8$, and photon spectral index of the Comptonized component $\Gamma=1.8$

Figure 3: Pulse profile histograms for energy fluxes integrated over three energy
intervals. Synthetic data is shown with blue crosses. The fluxes are normalized intervals. Synthetic data is shown with blue crosses. The fluxes are normalized solid contour a 95% highest posterior density credible region.

