Observables and EFT aspects of *B*-anomalies

J. Martin Camalich

XXIV Cracow EPIPHANY Conference

January 10th 2018

Lepton-universality violation in *b* → *c*τν **decays**

EFT of new-physics in $b \to c\tau\nu$

• Low-energy effective Lagrangian (no RH ν)

$$
\mathcal{L}_{\text{eff}}^{\ell} = -\frac{G_F V_{cb}}{\sqrt{2}} \left[(1 + \epsilon_L^{\ell}) \bar{\ell} \gamma_{\mu} (1 - \gamma_5) \nu_{\ell} \cdot \bar{c} \gamma^{\mu} (1 - \gamma_5) b + \epsilon_R^{\ell} \bar{\ell} \gamma_{\mu} (1 - \gamma_5) \nu_{\ell} \bar{c} \gamma^{\mu} (1 + \gamma_5) b \right]
$$

 $+\bar{\ell}(1-\gamma_5)\nu_{\ell}\cdot\bar{c}[\epsilon_{S}^{\ell}-\epsilon_{P}^{\ell}\gamma_5]b+\epsilon_{I}^{\ell}\bar{\ell}\sigma_{\mu\nu}(1-\gamma_5)\nu_{\ell}\cdot\bar{c}\sigma^{\mu\nu}(1-\gamma_5)b]+$ h.c.,

Wilson coefficients: ϵ_{F} decouple as $\sim v^2/\Lambda_{\text{NP}}^2$

- Matching to high-energy Lagrangian SMEFT
	- Symmetry relations for ϵ_{Γ}
		- \star In charged-currents ϵ_R^{ℓ} :

$$
\mathcal{O}_{\text{Hud}} = \frac{i}{\Lambda_{\text{NP}}^2} \left(\tilde{H}^\dagger D_\mu H \right) \left(\bar{u}_R \gamma^\mu d_R \right)
$$

■ RHC is lepton universal: $\epsilon_R^{\ell} \equiv \epsilon_R + \mathcal{O}(\frac{v^4}{\Lambda^4})$ $\frac{V}{\Lambda_{\rm NP}^4}$) \Rightarrow **Cannot explain LUR** $R_{D^{(*)}}$!

Down to 4 operators to explain $R_{D^*}: \epsilon_L, \epsilon_S, \epsilon_P, \epsilon_T$

The constraint of the *Bc*-lifetime

 $B\to D^*\tau\nu$ receives a contribution from ϵ_P

$$
\epsilon_P \langle D^*(k,\epsilon)|\bar{c}\gamma_5 b|\bar{B}(p)\rangle\!=\!-\frac{2\epsilon_P}{m_b+m_c}A_0(q^2)\epsilon^*\cdot q
$$

 \bullet $B_c \rightarrow \tau \nu$ also receives a **helicity-enhanced** contribution from $\epsilon_P!$

$$
\frac{\text{Br}(B_{C}^{-} \to \tau \bar{\nu}_{\tau})}{\text{Br}(B_{C}^{-} \to \tau \bar{\nu}_{\tau})^{\text{SM}}} = \left| 1 + \epsilon_{L} + \frac{m_{B_{C}}^{2}}{m_{\tau}(m_{b} + m_{C})} \epsilon_{P} \right|^{2}
$$

Use the lifetime of *B^c*

 \blacktriangleright Very high experimental precision (1.5%):

 $\tau_{B_c} = 0.507(8)$ ps

^I **QCD**: "Most of the *B^c* lifetime comes from *c*¯ → ¯*s* (∼ 65%) and *b* → *c* (∼ 30%)"

Bigi PLB371 (1996) 105, Beneke *et al.* PRD53(1996)4991,. . .

$$
\tau_{B_c}^{\rm OPE}=0.52^{+0.18}_{-0.12}\text{ ps}
$$

The constraint of the *Bc*-lifetime

 $B \to D^* \tau \nu$ receives a contribution from ϵ_P

 \bullet *B_c* $\rightarrow \tau \nu$ also receives a **helicity-enhanced** contribution from $\epsilon_P!$

τ*^B^c* makes **implausible ANY** "scalar solution" (e.g. 2HDM) to the *RD*[∗] anomaly!

A complementary bound $BR(B_c \to \tau \nu) \lesssim 10\%$ can be obtained from LEP data!

Akeroyd&Chen, 1708.04072

New-physics solutions and challenges: The left-handed operator

• Left-handed $\epsilon_L = 0.13$: *Universal* enhancement of the $b \to c \tau \nu$ rates by 30%

SMEFT operators: $Q_{\ell q}^{(1)} = \frac{1}{\Lambda^2} (\bar{Q}_L \gamma^\mu Q_L)(\bar{L}_L \gamma_\mu L_L), \qquad Q_{\ell q}^{(3)} = \frac{1}{\Lambda^2} (\bar{Q}_L \gamma^\mu \vec{\tau} Q_L) \cdot (\bar{L}_L \gamma_\mu \vec{\tau} L_L)$

EXECUTE: Warning: Radiative LUV contributions in τ and Z decays!

Ferruglio *et al.*PRL118 (2017), 011801

- ▶ Problem with 3rd generation: Non-trivial flavor str. Buttazzo et al. arXiv:1706.07808
- **Model dependence:** EFT only gives log parts (mixing)

 \bullet **It can also solve** $b \rightarrow s\ell\ell$ **anomaly!** Bhattacharya et al. '14, Alonso, JMC & Grinstein. '15, ...

- **Lepton flavor structure:**
	- $f\star$ Large enhancements $\tilde{C}_{\tau\tau}\gg\tilde{C}_{\mu\mu}$ ruled out by $B\to K^{(*)}\nu\nu$ unless $C^{(1)}_{\tau\tau}\simeq C^{(3)}_{\tau\tau}$

Tensor and scalar operators

- **Tensor** $\epsilon \tau = 0.38$
	- **Mixing in** $H^3\psi^2$ **operators that modify Yukawas** Jenkins *et al.*, arXiv: 1310.4838
	- ► EW+QED corrections: Large mixing tensor into scalars

Gonzalez-Alonso, JMC & Mimouni arXiv: 1706.00410

- ▶ **No explicit models** that give *only* tensor operators
- **Tensor & Scalar**
- Fit to current values of $R_{D(*)}$

- **► New solution:** ϵ_T interferes constructively in R_{D^*}
	- **★ Best Fit:** $\epsilon_S = 0.17$, $\epsilon_T = -0.04$
	- **★ Scalar Leptoquark** (1,1/3) produces $\epsilon_T = -\frac{\epsilon_{S_L}}{4}$
	- \star ϵ _{*P*} ∼ 0.2 produces BR(*B_c* → τ *ν*) ∼ 6%

Adding new channels: $B_c \rightarrow J/\psi \tau \nu$

$$
R_{J/\psi}^{\text{LHCb}} = 0.71 \pm 0.17 \pm 0.18
$$

Comparison with SM **NOW** is subtle because of **model dependence**

$$
R_{J/\psi}^{\rm SM^*} \sim 0.24-0.29
$$

Qiao&Zhu, 1208.5916

Goes in the *right* direction of NP but effect is **large**

• For the LH solution one predicts

$$
R_{J/\psi}^{\rm LH^*}\sim 0.35-0.4
$$

Besides more data, **LQCD input urgently needed!**

Adding new observables: Kinematic distributions $(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau)$

Alonso, Kobach, JMC, PRD94(2016)no.9,094021; Alonso, JMC, Westhoff, PRD95(2017)no.9,093006

Integrate analytically the τ **and** ν**'s angular phase-space:**

$$
\frac{d^3\Gamma_5}{dq^2dE_\ell d(\cos\theta_\ell)} = \mathcal{B}[\tau_\ell] \mathcal{N} \left[I_0(q^2, E_\ell) + I_1(q^2, E_\ell) \cos\theta_\ell + I_2(q^2, E_\ell) \cos\theta_\ell^2 \right]
$$

Angular distribution help discriminate signal, **normalization**, NP

 $\tau^+ \to \pi^+ \nu_\tau$ as a τ polarimeter: P_L

$$
\frac{dP_L}{dq^2} = \frac{d\Gamma_{B,+}/dq^2 - d\Gamma_{B,-}/dq^2}{d\Gamma_B/dq^2}
$$

Slope in
$$
E_{\pi}
$$
 of $d\Gamma_4 \Rightarrow$ **Longitudinal Polarization**
\n
$$
\frac{d^2\Gamma_4}{dq^2 dE_{\pi}} = \frac{\mathcal{B}[\tau_{\pi}]}{|\vec{p}_{\tau}|} \frac{d\Gamma_B}{dq^2} \left[1 + \xi(E_{\pi}, q^2) \frac{dP_L}{dq^2}\right], \quad \xi(E_{\pi}, q^2) = \frac{1}{\beta_{\tau}} (2\frac{E_{\pi}}{E_{\tau}} - 1)
$$
\nM. Davidier et al. PLE306, 411 (1993), TanakaäWatanabe, PPDB2, 034027 (2010)

Applied to the *BD*[∗] channel by *Belle*

$\tau^-\to\pi^-\nu_\tau$ as a τ polarimeter: P_\perp (and A^τ_{FB} !)

Alonso, JMC & Westhoff, arXiv:1702.02773

• Decay rate into a τ polarized along a given direction \hat{s}

$$
d\Gamma_B(\hat{s}) = d\Gamma + \frac{1}{2} d\Gamma \left(dP_L \hat{z}' + dP_{\perp} \hat{x}' + dP_T \hat{y}' \right) \cdot \hat{s}
$$

 \blacktriangleright *dP_L* measured by Belle

 \blacktriangleright *dP_T* (*T*-odd): Not accessible without τ **direction**

^I *dP*[⊥] **accessible from the pionic** *FB* **asymmetry!**

Tanaka Z. Phys. C 67, 321

P[⊥] probes **interference between** τ **polarization states**

$$
d\Gamma dP_{\perp} = \frac{(2\pi)^4 d\Phi_3}{2m_B} 2\text{Re}\left[\mathcal{M}_{B+} \mathcal{M}_{B-}^{\dagger}\right]
$$

$$
\begin{aligned}\n\frac{\partial^2 A_{FB}^d}{\partial q^2 dE_d} &= \mathcal{B}[\tau_d] \left[f_{FB}^d(E_d, q^2) \frac{dA_\tau}{dq^2} + f_\perp^d(E_d, q^2) \frac{dP_\perp}{dq^2} \right] \\
\frac{\partial^2 A_\tau}{\partial q^2} &= -\frac{(2E_\pi E_\tau - m_\tau^2)(E_\tau - |\vec{p}_\tau| - 2E_\pi)}{2|\vec{p}_\tau|^3 E_\pi} \qquad \frac{\partial^2 A_\tau}{\partial \vec{E}_\tau} &= -\frac{4E_\pi^2 - 4E_\pi E_\tau + m_\tau^2}{\pi E_\pi |\vec{p}_\tau|^3 m_\tau}\n\end{aligned}
$$

$\tau^-\to\pi^-\nu_\tau$ as a τ polarimeter: P_\perp (and A^τ_{FB} !)

Alonso, JMC & Westhoff, arXiv:1702.02773

• Decay rate into a τ polarized along a given direction \hat{s}

$$
d\Gamma_B(\hat{s}) = d\Gamma + \frac{1}{2} d\Gamma \left(dP_L \hat{z}' + dP_{\perp} \hat{x}' + dP_{\overline{I}} \hat{y}' \right) \cdot \hat{s}
$$

- \blacktriangleright *dP_I* measured by Belle
- \blacktriangleright *dP_T* (*T*-odd): Not accessible without τ **direction**
- ^I *dP*[⊥] **accessible from the pionic** *FB* **asymmetry!**

Tanaka Z. Phys. C 67, 321

 \blacktriangleright Prospects at Belle (II)

Sensitivity to NP

Lepton-universality violation \mathbf{i} **n** $b \rightarrow s \ell \ell$ **decays**

New physics in muons

Geng, Grinstein, Jäger, Martin Camalich, Ren, Shi, arXiv: 1704.05446

Nodes indicate steps of $\Delta C^{\mu} = +0.5$

- ► **Primed operators** $C'_{9,10}$: Monotonically decreasing dependence $R_{K^*}(R_K)$!
- New physics in electrons∼ mirror image of above (see D'Amico *et al.* 1704.05438)

Geng, Grinstein, Jäger, Martin Camalich, Ren, Shi, arXiv: 1704.05446 D'Amico *et al.* 1704.05438

Obs.	Expt.	SM	$\left \delta C_L^{\mu} = -0.5 \right \delta C_9^{\mu} = -1 \left \delta C_{10}^{\mu} = 1 \right \delta C_9^{\prime \mu} = -1 \left \delta C_9^{\prime \mu} = -1 \right $		
R_K [1, 6] GeV ²	$\left 0.745 \pm 0.090\right 1.0004^{+0.0008}_{-0.0007}\left \right.0.773^{+0.003}_{-0.003}\left 0.797^{+0.002}_{-0.002}\right 0.778^{+0.007}_{-0.007}\left 0.796^{+0.002}_{-0.002}\right $				
R_{K^*} [0.045, 1.1] GeV ² 0.66 ± 0.12 0.920 ^{+0.007}			$\begin{array}{ c c c c c c c c } \hline 0.88^{+0.01}_{-0.02} & 0.91^{+0.01}_{-0.02} & 0.862^{+0.016}_{-0.011} & 0.98^{+0.03}_{-0.03} \hline \end{array}$		
R_{K^*} [1.1, 6] GeV ²	$\begin{array}{ l} 0.685 \pm 0.120 & 0.996^{+0.002}_{-0.002} \end{array}$		$0.78^{+0.02}_{-0.01}$	$0.87^{+0.04}_{-0.03}$ 0.73 $^{+0.03}_{-0.04}$ 1.20 $^{+0.02}_{-0.03}$	
R_{K^*} [15, 19] GeV ²	$\overline{}$	$0.998^{+0.001}_{-0.001}$	$\left.\left.\left.\right 0.776^{+0.002}_{-0.002}\left 0.793^{+0.001}_{-0.001}\right 0.787^{+0.004}_{-0.004}\right 1.204^{+0.007}_{-0.008}\right]$		

Very clean null-tests of the SM!

Warning: Central Value at ultralow-q² is difficult to accommodate with UV physics

Fits with clean observables only

Assume NP is µ**-specific**

- **► Deviation of the SM:** *p*-value of 3.7 \times 10⁻⁴ (3.6 σ)
- **E** Best fit suggests a leptonic left-handed scenario δC_L^{μ}

Global fits

Include 70-100 observables

- **•** C_9 in global fits is subject to hadronic uncertainties!
- **•** Results in the $(\delta C_9^{\mu}, \delta C_{10}^{\mu})$ plane

Altmannshofer *et al.* arXiv:1704.05435

Precision probes of lepton nonuniversal $C_{9,10}^{\ell}$

Go to the angular analysis of $B \to K^* \ell \ell...$

$$
\textit{I}_{6}^{(\ell)}\text{=}NC_{10}^{\ell}q^{2}\beta_{\ell}^{2}(q^{2})\vert\vec{k}\vert\left(\text{Re}[H_{V_{-}}^{(\ell)}(q^{2})]V_{-}(q^{2})+\text{Re}[H_{V_{+}}^{(\ell)}(q^{2})\frac{H_{A_{+}}^{(\ell)}(q^{2})}{C_{10}^{\ell}}]\right)
$$

In The $H_{V,A+}$ amplitudes are suppressed unles we have primed operators!

$$
R_6[a,b] \approx \frac{C_{10}^{\mu}}{C_{10}^{\rho}} \times \frac{\int_a^b |\vec{k}|q^2\beta_{\mu}^2 \text{Re}[H_{V_{-}}^{(\mu)}(q^2)]V_{-}(q^2)}{\int_a^b |\vec{k}|q^2 \text{Re}[H_{V_{-}}^{(\rho)}(q^2)]V_{-}(q^2)}
$$

*R*₆ is an optimal *C*₁₀ LUV analyser!

Prospects for R_6 with a 5% precision

$$
\blacktriangleright \; D_{P'_5} = P'^{\mu}_5 - P'^e_5
$$

Altmannshofer *et al.* arXiv:1704.05435

Conclusions

Interesting times ahead!

"Instant" workshop at CERN last May

- 9 4-3-006 TH Conference Room (CERN)
- Jorge Martin Camalich (CERN) Jure Zupan (University of Cincinnati) J. Marco Nardecchia (CERN)

Description In light of recent anomalies in B physics there is an increased interest in the theory community on its implications. As a quick response we are organizing an "Instant workshop on B meson anomalies" at CERN from May 17-May 19 2017.

Check recordings @ <https://indico.cern.ch/event/633880/>

CERN-TH Institute programmed for the next year

"From flavor anomalies to direct discovery of New Physics" *Oct. 22nd to Nov. 2nd 2018 (tentative)*

 $\sqrt{2}$

Searches for $B_c \rightarrow \tau \nu$ at LEP

 $\mathsf{BR}(B_c\to\tau\nu)$ measured in a e^+e^- collider at the Z pole $\scriptscriptstyle\rm A\&Reroyd\&Chen, 1708.04072}$

► Searches of $B^ \rightarrow \tau^- \nu$ above B_c \bar{B}_c threshold really measure

Mangano&Slabospitsky, PLB410(1997)299

$$
\frac{\text{LEP}}{\text{BR}_{\text{eff}}} = \frac{\text{Belle & BaBar}}{\text{BR}(B \to \tau \nu)} + \frac{f_c}{f_u} \text{BR}(B_c \to \tau \nu)
$$

► B_c contribution suppressed by $f_c/f_u \sim 10^{-3}$ -10⁻² but enhanced by $\frac{|V_{cb}|^2}{|V_{c}||^2}$ $\frac{|V_{cb}|^2}{|V_{ub}|^2}\frac{t_{B_c}^2}{t_{B}^2}\sim$ **700**

- *fc*/*fu*: Fraction of hadronization into *B^c* over *B*
	- **F** Traded by experimental data and **computable TH. input**

$$
R_{\ell} = \frac{f_c}{f_u} \frac{\text{BR}(B_c \to J/\psi \mu \nu)}{B \to J/\psi K}
$$

 \triangleright R_ℓ measured by **CDF** and reconstructed from **LHCb** data

Searches for $B_c \rightarrow \tau \nu$ at LEP

■ Model calculations predict $BR(B_c \rightarrow J/\psi \mu \nu)$ ∈ 1 − 7%!

					pQCD WSL[9] EFG[7] ISK[6] HNV[5] DV[4]	
$V^{B_c\to J/\Psi}$	0.42	0.74	0.49	0.83	0.61	0.91
$A_0^{B_c\to J/\Psi}$	0.59	0.53	0.40	0.57	0.45	0.58
$A^B \rightarrow J/\Psi$	0.46	0.50	0.50	0.56	0.49	0.63
$A_2^{B_c\to J/\Psi}$	0.64	0.44	$\boxed{0.73}$	0.54	0.56	TOWA

Wang, Fang&Xiao, arXiv: 1212.5903

- **Ongoing efforts in LQCD!**
- **Preliminary** results to select models

Constrains BR($B_c \rightarrow \tau \nu$) < 10%

