Current and future neutrino experiments

Justyna Łagoda

Plan

- short introduction
- non-oscillation experiments
 - neutrino mass measurements
 - search for neutrinoless double beta decay

- reactor neutrinos
- solar neutrinos
- atmospheric neutrinos
- long baseline experiments
- search for sterile neutrinos

Neutrino mixing

mixing matrix for 3 active flavours

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix} \quad \begin{array}{c} \text{2 additional phases if neutrinos are Majorana particles} \\ \text{Majorana particles} \\ \end{array}$$

3 mixing angles θ₁₂, θ₁₃, θ₂₃, CP violation phase δ_{CP}

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4\sum_{i>j} \Re \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin^{2} \Delta m_{ij}^{2} \frac{L}{4E} \pm 2\sum_{i>j} \Im \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin^{2} \Delta m_{ij}^{2} \frac{L}{4E}$$

- 2 independent mass splittings: $\Delta m_{21}^2 = m_2^2 m_1^2$, $\Delta m_{32}^2 = m_3^2 m_2^2$,
- 2 "controlled" parameters: baseline L and neutrino energy E
- the presence of matter (electrons) modifies the mixing
 - energy levels of propagating eigenstates are altered for \mathbf{v}_{e} component (different interaction potentials in kinetic part of the hamiltonian)
 - matter effects are sensitive to ordering of mass eigenstates

Known and unknown

 neutrino properties are measured using neutrinos from various sources in various processes and detection techniques

 $\sin^2(\bar{\theta}_{13}) = (2.19 \pm 0.12) \times 10^{-2}$ δ_{CP} = some hints mass hierarchy: matter effects, $0\nu\beta\beta$

 $\Delta m_{32}^2 = (2.51 \pm 0.06) \times 10^{-3} \text{ eV}^2$

absolute mass scale: β and 0vββ decay, cosmology

sterile neutrinos? oscillation experiments, cosmology

Measurements of neutrino mass

absolute scale of neutrino mass can be obtained from:

	current upper limit	sensitivity (long-term)	observable	strong m depende
cosmology	0.2-0.6 eV	15 meV	Σm _i	- cosmol model
neutrinoless double β decay	0.1-0.4 eV	20-40 meV	$m_{\beta\beta}^2 = \Sigma U_{ei} m_i ^2$	
β decay and electron capture	2 eV	40-100 meV	$m_{\beta}^2 = \Sigma U_{ei} ^2 m_i^2$	rana pha

nodel ence:

- logical
- r matrix ts+Majoases

Requirements

- high activity source
- excellent energy resolution: huge spectrometer needed→ KATRIN

Other possible methods:

- cyclotron radiation emission spectroscopy (PROJECT 8)
- calorimetric measurement for 0.0 holmium-163 (ECHO, HOLMES, NuMECS)

KATRIN

- gaseous molecular tritium source, activity 170 GBq
- lossless electron transport in magnetic field (5.6 T), huge main spectrometer (70 m total beamline)
- 200 meV sensitivity (design, 90% CL)
 - σ_{stat} ≈ 0.018 eV², $\sigma_{\text{sys,tot}}$ ≈ 0.017 eV²
 - m = 0.35 eV observable with 5σ

KArlsuhe TRItium Neutrino experiment

- status:
 - June 2017: tests and calibration with Kr source
- June 2018 start of data taking with tritium

also: sensitive to eV- and keV-sterile neutrinos

Dirac or Majorana neutrinos?

- neutrinoless double β decay only for Majorana neutrinos
 - lepton number not conserved
 - lifetime > ~10²⁶ years implies mass < 0.1 eV

$$(T_{1/2})^{-1} = G(Q_{\beta\beta}, Z)g_A^4 |M^{0\gamma}|^2 \langle m_{\beta\beta} \rangle^2$$

phase space factor (good accuracy)

nuclear matrix elements (large uncertainties)

- good energy energy resolution
- and low background needed

(LEGEND)

gas TPC tracking calorimeter ¹⁰⁰Mo,

AmoRE (SuperNEMO, (CUPID) (SNO+)

¹³⁰Te, ¹³⁶Xe

CUORE

counts 2ν2β $0v2\beta$ Total energy in electrons

EXO-200

KamLAND-Zen (NEXO, NEXT, PANDA-X III)

my

liquid TPC bolometer

GERDA

- GERmanium Detector Array immersed in an active liquid argon shield
 - germanium mono-crystals enriched in ⁷⁶Ge (86%), currently ~36 kg
 - source = detector
- region of interest Q_{ββ} = 2039 keV
- excellent energy resolution at ROI:
 - coaxial 4.0 ± 0.2 keV,
 BEGe 3.0 ± 0.2 keV
- lowest background in ROI
 - LAr: cooling, passive shield and veto
 - PMT and SiPM readout of scintillation light
 - water Cherenkov and plastic scintillator muon veto
 - located in underground LNGS laboratory

Results from GERDA

- phase I+IIa published data
 - background at ROI for BEGe detectors: (0.7^{+1.1}_{-0.5})·10⁻³cts/(keV·kg·yr)
 - limit: $T_{1/2} > 5.3 \cdot 10^{25} \text{ yr} (90\% \text{ CL})$ (sensitivity: $T_{1/2} > 4.0 \cdot 10^{25} \text{ yr}$)
 - m_{ββ} < 0.15-0.33 eV
 (for nuclear matrix elements range 2.8-6.1)
- new preliminary results for total exposure of 46.7 kg·yr (TAUP 2017):
 - $T_{1/2} > 8.0 \cdot 10^{25} \text{ yr } (90\% \text{ CL})$
 - $m_{gg} < 0.12-0.27 \text{ eV}$
- mid 2018: 10²⁶ yr if no signal observed
- Phase I 23.6 kg·yr 10^{-2} Phase II - enriched coaxial 5.0 ka·vr 10^{-2} 10^{-3} counts / (keV-kg-yr Phase II - enriched BEGe 5.8 kg·yr 10 10-2 1950 2000 2050 2100 energy [keV] Nature 554 (2017) 47

after LAr veto (Phase II)

after all cuts

limit (90% C.L.)

- final exposure 100 kg·yr with sensitivity 1.3·10²⁶ yr (limit) or ~8·10²⁵ yr (50% for 3σ discovery)
- plans for ton-scale ⁷⁶Ge experiment (LEGEND)

Reactor neutrinos

- electrons antineutrinos from decays of uranium and thorium fission products
 - \sim 10²⁰ v/GW s, 6/fission,
 - energies ~few MeV
- detection by inverse beta decay
 - positron annihilation + delayed signal from neutron capture

- Daya Bay, RENO, Double CHOOZ
 - liquid scintillator detectors, doped with Gd
 - near and far stations to reduce systematic errors

Oscillations of reactor neutrinos

sectors 1-2 and 1-3 available, depending on the baseline

$$P(\overline{v_e} \to \overline{v_e}) \simeq 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \frac{\Delta m_{21}^2 L}{4E}$$
 sector 1-2: KamLAND, most precise determination of Δm_{21}^2
$$-\sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \frac{\Delta m_{31}^2 L}{4E} + s_{12}^2 \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right]$$
 sector 1-3

Reactor neutrinos: sector 1-3

• Daya Bay: most precise measurement of θ_{13} $\sin^2 2\theta_{13} = 0.0841\pm0.0027$ (stat.) ±0.0019 (syst.)

using data colected up to July 2015

- 1230 days
- >2.5 million events(Phys.Rev.D 95, 072006 (2017)

 measurement from RENO: 0.086±0.008 and Double Chooz: 0.119±0.016

survival probability: clear L/E dependence

Reactor neutrinos: mass hierarchy

- plans for medium baseline
- JUNO (~2020) in China
 - active mass: 20 kton liquid scintillator
 - 2 independent PMT systems:
 - 18000 20" PMTs
 - 25000 3" PMTs

3% energy resolution at 1 MeV needed

- 2 nuclear power plants (6+4 cores) at 53 km
- expected event rate 83/day
- start in 2020, 3σ sensitivity to mass hierarchy after 6 years

- also precise (<1%) measurements $_{\text{VETO PMTs}}$ of Δm_{21}^2 , $\sin^2\theta_{12}$,

Water pool: $\Phi43.5m$

CD support

Solar neutrinos

- electron neutrinos from fusion reactions in the Sun
- continuous or monoenergetic spectrum, depending on the production process
 - energies ~few MeV
- deficit of v_e observed since
 60ties (Davis, Nobel 2002)
- mystery solved by SNO
 - \rightarrow presence of neutrinos other than v_e proved by the measurement of total flux in NC and ES interactions (McDonald, Nobel 2015)
- measured spectrum and rate strongly depends on the detection technique

Solar neutrinos: MSW effect

- expected behaviour for solar neutrinos
 - resonant enhancement of neutrino mixing in matter occurs for particular energies, depending on electron density and Δm²
 - vacuum oscillations below 1 MeV
 - resonant conversion above 5 MeV
- **Borexino** measurements
 - elastic scattering: v + e⁻ → v + e⁻ in liquid scintillator
 - low threshold (~70 keV), ultra-low radioactive background + excellent background control

270t of liquid organic scintillator (100t fiducial)

1000t of liquid 15 buffer

Measurements of solar neutrinos

- Borexino measurements:
 - first detection of ⁷Be and pep neutrinos
 - almost full solar neutrino spectroscopy
 - hunt for CNO neutrinos
- what about matter effects in Earth?

- can be studied by day/night asymmetry
 - ~3.3% for ⁸B neutrinos
 (Super-Kamiokande)
 2.9σ significance
 - consistent with 0 for ⁷Be neutrinos (Borexino)

Vacuum regime

Atmospheric neutrinos

 produced in the decays of the particles emerging from the interactions of the primary cosmic rays with the atmosphere

$$\begin{array}{c} \pi^+ \rightarrow \mu^+ v_\mu^{} \,,\; \mu^+ \rightarrow e^+ v_e^- \overline{v}_\mu^{} \\ \pi^- \rightarrow \mu^- \overline{v}_\mu^{} \,,\; \mu^- \rightarrow e^- \overline{v}_e^{} v_\mu^{} \end{array}$$

- baseline determined by v arrival direction
- energies ~sub-GeV-TeV
- oscillation parameters in sector 2-3 can be measured (results will be shown later)
- mass hierarchy can be determined using 6-12 GeV neutrinos thanks to matter effect in the Earth
 - for normal (inverted) hierarchy oscillations enhanced for (anti)neutrinos

Super-Kamiokande

- oscillations of atmospheric neutrinos (ν_μ disappearance) discovered in 1998 (Kajita, Nobel 2015)
- water Cherenkov detector
 - total mass 50 kt, fiducial mass 22.5 kt
 - >11 000 PMTs in inner detector
 - ΔE/E ~10% for 2-body kinematics
 - very good μ/e separation
 - muons misidentified as electrons: <1%
- still producing results: ν_τ appearance search (hadronic τ decay modes)
 - neural network, for upward direction events
 - no tau appearance hypothesis excluded with 4.6 σ
 - dominated by statistical uncertainty

"Natural" detector: IceCube

- located at the South Pole
 - 1km³ of ice used as detector medium
- energy range: ~100 GeV to ~10 PeV
 - first oscillation maximum at ~25 GeV
- → DeepCore
 - 8 short distance strings (~500 modules) optimized for ~10-100 GeV
 - expected 60k atm. neutrinos/year
- PINGU to determine mass hierarchy
 - neutrinos energies below 12 GeV
 - 40 additional strings, spacing 22m,
 50 modules per string
 - energy resolution ~20% above 10GeV,
 zenith angle resolution 5° at 20GeV
 - start in 2018, 4 years to be completed

"Natural" detector: KM3NeT

- KM3NeT in Mediterannean Sea
- ORCA Oscillation Research from Cosmics in the Abyss
 - dense array (spacing 20m) of multi-PMT digital modules (115 strings) at depth of 2475m
 - expected ~50 000 events/year
 - at 10GeV: energy resolution ~25%, zenith angle resolution 5°
 - completion expected in 2020

Long baseline experiments

- relatively well controlled beam of neutrinos
 - energy (\sim GeV), direction, intensity, type (v_{μ} or $\overline{v_{\mu}}$)

- v_µ disappearance and v_e appearance
- two currently running experiments with off-axis beam
 - kinematics of pion decay → threshold energy for neutrinos emitted at a given angle
 - narrow spectrum peaked at oscillation maximum

T2K

- started to take data in 2010, antineutrino beam mode 2014-2016
- located in Japan, beam 2.5° off-axis from J-PARC (Tokai) to Super-Kamiokande (FD)

- multi-purpose magnetized off-axis ND280
- cross-shaped on-axis detector (INGRID)

- in FD: FCFV one-ring $v_{\mu/e}$ events = CC QE candidates
 - recently CC1π v_a sample added in analysis

NOvA

15.7 m

- started in 2013, last oscillation results shown in 2016
 - beam from Fermilab, 14 mrad (0.84°) off-axis
- 14 kton (10.3 kton FV) 65% active Far Detector (at 810km)
 - 15.6m plastic cells filled with liquid scintillator
 - wavelenght-shifting fibers + avalanche photodiodes
 - Near Detector in the same technique
- energy estimation from lepton track length and visible hadronic energy
- image transformation and neural networks used in v_e event

selection

Single Cell

To APD Readout

Scintillation

Light

Trajectory

Waveshifting

3.9cm 6.6cm

Fiber Loop

 $V_{
m e}$ $V_{
m p}$ $V_{
m p}$ $V_{
m p}$ $V_{
m p}$

REAL DAIA

T2K and NOvA

		T2K	NOvA	
T2K	baseline	295 km	810 km	
	peak energy	600 MeV	2 GeV	VOVA
	Near Detector	multi-purpose (TPC, FGD, ECAL) magnetized	extruded plastic cells filled with liquid scintillator	
	Far Detector	50 kton Water Cherenkov	14 kton scintillator	
diffused edge	data sets	neutrino and antineutrino	neutrino (antineutrino not published yet)	cascade
ė	$E_{\scriptscriptstyle v}$ reconstruction	CC QE events	calorimetric	
	v _e /v _µ recognition	shape of Cherenkov rings	image transformation, neural network	$X_0 = 38 \text{ cm}$
24 sharp odge	+μ		ν _μ	long track
sharp edge			•	

v_u disappearance

oscillation pattern in T2K:

- preference for maximal mixing (PRD 96, 092006 (2017)
- but NOvA excludes maximal mixing at 2.6σ (PRL 118, 151802 (2017)

to be investigated... (new T2K results soon)

What so special about $v_{\parallel} \rightarrow v_{\parallel}$ channel?

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = 4 \, c_{13}^{2} \, s_{13}^{2} \, s_{23}^{2} \, \sin^{2} \Delta_{31} \qquad \text{dominant term} \\ + 8 \, c_{13}^{2} \, s_{12} \, s_{13} \, s_{23} \, (c_{12} \, c_{23} \cos \delta_{CP} - s_{12} \, s_{13} \, s_{23}) \cos \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \\ - 8 \, c_{13}^{2} \, c_{12} \, c_{23} \, s_{12} \, s_{13} \, s_{23} \, \sin \delta_{CP} \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \qquad \text{CP violation} \\ + 4 \, s_{12}^{2} \, c_{13}^{2} \, (c_{12}^{2} \, c_{23}^{2} + s_{12}^{2} \, s_{23}^{2} \, s_{13}^{2} - 2 \, c_{12} \, c_{23} \, s_{12} \, s_{23} \, s_{13} \cos \delta_{CP}) \sin^{2} \Delta_{21} \qquad \text{matter} \\ - 8 \, c_{13}^{2} \, s_{13}^{2} \, s_{23}^{2} \, \frac{a \, L}{4 \, E_{\nu}} \, (1 - 2 \, s_{13}^{2}) \cos \Delta_{32} \sin \Delta_{31} + 8 \, c_{13}^{2} \, s_{13}^{2} \, s_{23}^{2} \, \frac{a}{\Delta m_{31}^{2}} \, (1 - 2 \, s_{13}^{2}) \sin^{2} \Delta_{31} \\ \text{for } \, \bar{\mathbf{v}} \\ \delta_{CP} \rightarrow -\delta_{CP} \\ a \rightarrow -a \qquad a = 2 \, \sqrt{2} \, G_{F} \, n_{e} \, E_{\nu} \\ n_{e} \, \text{related to matter density} \\ \text{subleading effect} \\ \text{can be as large as 30\%} \\ \text{of dominant term} \\ \text{subleading effect} \\ \text{can be as large as 30\%} \\ \text{of dominant} \, \frac{1}{2} \, \frac{1}{2$$

parameter degeneracies to disentagle: effects from mass hierarchy, CP violation, octant of θ_{23} – more effects to study

E_v (GeV) 2

of dominant

combination of experiment with different baseline increases sensitivity

Hints on CP violation

T2K data, joint fit of (anti)v_u and (anti)v_e samples

$\delta_{_{CP}}$	-0.5π	0	0.5π	π	data
v _e CCQE	73.5	61.5	49.9	62	74
$v_{_{e}}^{}$ CC1 π	6.92	6.01	4.87	5.78	15
\overline{v}_e CCQE	7.93	9.04	10.04	8.93	7

- θ_{13} consistent with reactor, closed δ_{CP} contours

- improved limits on $\delta_{_{\mathsf{CP}}}$
- 2σ confidence interval δ_{CP} = [-2.98, -0.60] (NH) [-1.54, -1.19] (IH)

 CP conserving values disfavoured at >2σ

27

NOvA results

- v_e appearance shown at NEUTRINO 2016 with 33 observed events
 - allowed regions for δ_{CP} and $\text{sin}^2\theta_{23}$
- 2 degenerated best fit points 3σ exclusion of inverted hierarchy and lower θ_{23} octant around $\delta_{CP} = \pi/2$
- for all values of δ_{CP} and both
 θ₂₃ octants the inverted hierarchy
 predicts fewer events than observed
 → small preference for normal hierarchy
- new results will be announced today in Fermilab

T2K

preferred

Near future for LBL experiments

T2K and NOvA will continue to run over next several years

T2K proposes phase 2 with upgrade of near detector and Gd

added to Super-Kamiokande

 expanded ND280 angular acceptance

- reduction of flux and cross section uncertainties
- antineutrino event tagging in SK
- technical design soon, aim for installation 2020/2021 for T2K II
- up to 3σ sensitivity for rejecting the no-CPV hypothesis
- next generation of LBL already being planned, designed for 5σ sensitivity for CP violation

but not only! Physics program is really wide

DUNE

- liquid argon imaging technique
 - dense target, ionization and scintillation signal, close to full acceptance
 - PID based on dE/dx and range, excellent photon/electron separation
- very long baseline: 1300 km
- Far Detector: 4x17 kton LAr TPC
 (>40 kton fiducial mass), single or dual phase
 19.1m (16.9m) W x 18m(15.8m) H x 66m(63.8m) L
- design of Near Detector on-going
- megawatt class on-axis broadband beam (1.2→2.4 MW)
 - wide spectrum covering the 1st and 2nd oscillation maxima → together with distance breaks the degeneracy between matter effects and CP violation

DUNE sensitivity: mass hierarchy

- assumptions: staging, 1.07 MW beam with 20 kton, after 7 years
 2.14 MW with 40 kton, v:v data taking 1:1, θ₂₃ non maximal
- mass hierarchy determination relatively quick

DUNE sensitivity: CP violation

• rejection of $\sin \delta_{CP} = 0$

 δ_{CP} resolution

- far site construction started 2017
 - detector installation expected 2021, physics run 2024 (20 kton), beam 2026
 - 770 t LAr ProtoDUNE prototypes (single- and dual-phase) under construction at CERN, beam tests expected in 2018

Hyper-Kamiokande

260 kton

260 kton

- Water Cherenkov detector
 - mature, known, scalable technology
- 2 vertical tanks
 - building in stages possible
 - significant reduction of costs
- fiducial volume: 190 kton each (= 10xSK)
- new improved PMTs: 2x better photon efficiency and timing resolution (1ns) (other solutions under study)
- candidate site 8 km south of Super-Kamiokande
 - the same baseline (295 km) and off-axis angle (2.5°) as Super-K
 - second tank in Korea?
- continuous upgrade of J-PARC beam: 1.326 MW by 2026

74 m

60 m

³³• intermediate detector at 1-2km?

H-K sensitivity: mass hierarchy

assumptions: 1st tank with 1.3 MW beam, 2nd tank 6 years later,

v:v data taking 1:3,

 sensitivity increased by combining beam and atmospheric neutrinos

10 years exposure (2.6 Mton year)
 >5σ determination of mass hierarchy (if not known yet)

10 yrs		Mass Hierarchy (σ)		
NH		Atm	Atm+Beam	
2Tanks	θ ₂₃ =0.4	2.2	5.3	
	θ ₂₃ =0.6	5.2	6.9	

10 yrs	Octant (σ)		
NH	Atm	Atm+Beam	
θ_{23} =0.45	2.2	5.8	
$Q_{23}^{\circ}=0.55$	1.7	3.7	

- improved perfomance for θ_{23} octant determinat $\theta_{23}^{-0.45} = 0.55$ 1.7 3.7

H-K sensitivity: CP violation

• exclusion of $\sin \delta_{CP} = 0$ with precision:

- > 8 σ if true δ_{CP} = $\pm 90^{\circ}$
 - > 5σ for 57% of δ_{CP} values
 - $> 3\sigma$ for 76% of δ_{CP} values
- δ_{CP} resolution
 - 21° precision at δ_{CP} =90° 7° precision at δ_{CP} =0°

CPV significance for δ =-90°, normal hierarchy

- selected as one of important large scale projects by Science Council of Japan
 - listed on the ROADMAP2017 of MEXT

upgrade of J-PARC is top priority in KEK Project Implementation Plan

Sterile neutrinos

- Experimental hints:
 - **LSND** anomaly: \overline{v}_{e} appearance in \overline{v}_{μ} beam (3.8 σ)
 - **MiniBooNE**: (anti)ν_e appearance in (anti)ν_μ beam (3.8σ) different energy similar L/E
 - LSND effect expected at high energy, but excess seen at low energy
 - **gallium** anomaly: lower v_e event rates for 51 Cr and 37 Ar sources used to calibrate solar neutrino detectors filled with gallium (2.9 σ)
 - **reactor** anomaly: deficit of \overline{v}_e compared to reactor flux prediction (2.8 σ)
 - all anomalies point to Δm²~1eV²
- sterile neutrinos can affect oscillations through mixing:

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$
3+1 hypothesis

different

short baseline

Searching for sterile neutrinos

Current results

- Daya Bay: fuel evolution measurement explains the reactor anomaly?
 - oscillations disfavored at 2.6σ
 PRL 118 (2017) 251801
- v_µ disappearance
 in MINOS/MINOS+

38

Probability

- long baseline experiment (735 km)
- sensitive to θ_{24} , θ_{34} and Δm_{41}^2
- both CC and NC channels used
- ratio of Near and Far detector spectra
- combined with Daya Bay
 (to have θ₁₄ measurement for comparison
 in LSND phase space)
- tension between appearance and disappearance experiments

CeSOX

- Borexino detector and v_g from PBq ¹⁴⁴Ce-¹⁴⁴Pr source
 - y radiation must be fully shielded
 - activity measured by heat
- two different techniques
 - distortion of the energy spectrum
 - dependence on the distance from the source (spatial waves)
 - vertex resolution ~15cm

no oscillations

- source delivery to LNGS: April 2018
- physics run: 18 months (>10k events)

Liquid argon detectors in Fermilab

- is the excess in MiniBooNE coming from misidentified photons?
- liquid argon detectors can provide the answer

- 3 detectors planned in Fermilab (Short Baseline Neutrino Program)

476 t active mass at 600 m during installation

112 t active mass at 110 m in construction

85 t active mass at 470 m, running

(anti)v_e appearance and (anti)v_µ disappearance can be studied

JHEP 1403 (2014) 028

Summary

- era of precision measurements in neutrino oscillation physics
 - sensitivity and precision continuosly improved
- expected progress in next few years...
 - mass measurement in beta decay KATRIN starting soon
 - 0γββ not observed, stronger limits expected in 2018
 - mixing angles tension in θ_{23} measurements to be resolved
 - some hints on CP violation and mass hierarchy
 - 3σ for MH ~2020? for CPV ~2025?
 - no signal of sterile neutrinos yet some answers within 3-5 years
- ...and in ~10years
 - 5σ sensitivity for mass hierarchy
 - 5σ sensitivity for CP violation

Backup slides

Sources of neutrinos

second most abundant particles in the Universe

many sources, wide spectrum of energies

0vββ experiments

- CUORE: TeO₂ bolometers
 - 206kg of ¹³⁰Te
 - T_{1/2} > 6.6·10²⁴ yr
 - $m_{gg} < 210-590 \text{ meV}$

- EXO-200
 - 177.6 kg y
 - T_{1/2} > 1.8·10²⁵yr (90% CL)
 - <m_{$\beta\beta$}> < 147-398 meV

No statistically significant excess: combined p-va

Reactor spectra measurements

E_{vis} in MeV

- evolution of flux and spectrum (Daya Bay, PRL 118, 251801 (2017)
 - fuel composition evolves over time
 - expected more v_e from ^{235}U fission chain than ^{239}Pu F_{235}

overestimated contribution from ²³⁵U

v_u disappearance in T2K

- **CPT test** by comparing $v_u \rightarrow v_u$ and $v_{\mu} \rightarrow v_{\mu}$ modes

 184.8 events expected without oscillation
- 66 events observed
- independent oscillation parameters for antineutrinos

results consistent with no difference between disappearance of neutrinos and antineutrinos

→ CPT conserved

v_e vs. v_e appearance

• different probabilities for v and \overline{v} even if CP is not violated – due to

biprobability plots

T2K results

- v / \overline{v} datasets ~ 2:1
- v_e appearance
 - observed: 74 CC QE + 15 1π events
- v_e appearance
 - observed: 7 events

$\delta_{_{CP}}$	-0.5π	0	0.5π	π	observed
v _e CCQE	73.5	61.5	49.9	62	74
v _e CC1π	6.92	6.01	4.87	5.78	15
\overline{v}_{e}^{CCQE}	7.93	9.04	10.04	8.93	7

more v_e appearance and less v_e appearance than expected if CP is conserved

500

Reconstructed v energy (MeV)

1000

Other physics in future LBL experiments

- neutrino oscillations
 - with beam and atmospheric neutrinos
 - CP violation
 - precise measurement of θ23
 - mass hierarchy determination
- searching for nucleon decay
 - sensitivity 10x better than Super-K (10³⁵ years)
 - HK: $p\rightarrow e^+\pi^0$, DUNE: $p\rightarrow \mu\pi^+K^+$, $p\rightarrow e^+\pi^+\pi^-$ and $p\rightarrow K^+v$, $p\rightarrow e^+K^0$ and $p\rightarrow \mu^+K^0$
- neutrino astrophysics
 - precise measurement of solar neutrinos, sensitivity to address solar and reactor neutrinos discrepancy
 - supernova burst and relic supernova neutrinos
 - geoneutrinos
- 99 indirect Dark Matter search

