Hunting stops with tau leptons using the ATLAS detector

XXIV Cracow EPIPHANY Conference

On behalf of the ATLAS Collaboration Michael Holzbock Conference Note for SUSY17: ATLAS-CONF-2017-079

January 11, 2018

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Brief Review of Supersymmetry

Motivation

- shortcomings of SM
 - no unification of coupl. const.
 - no dark matter candidate
 - loop corrections of Higgs mass
- can be solved by SUSY

Implementation

- extend symmetries of Poincaré group
- operator Q relating fermions and bosons:

 $Q |Boson\rangle = |Fermion\rangle$ and v.v.

- SUSY broken by unknown mechanism
- consider minimal supersymmetric extension of SM: MSSM

Signal Model

Production & Decay

- direct production of scalar-top pairs
- 3-body decay of stop to b-quark, neutrino and stau
- stau decays into tau and gravitino (massless LSP)
- simplified model (BRs = 1)

Final State

• 2 taus

• 2 b-quarks

• large $E_{\rm T}^{\rm miss}$

How do taus look in the detector?

Analysis Strategy

General Layout

- di-tau final state \rightarrow separation into lep-had and had-had channels
- · combine both channels in statistical model to maximize sensitivity

Strategy for Background Estimation

- define signal-enriched region (SR)
- check and normalize background predictions in CR
- extrapolate from CR to SR
- verify extrapolation in VR

observable 1

General Event Selection

Trigger

- lep-had: single-electron and single-muon trigger
- had-had: E_T^{miss} and di-tau trigger

Event selection for SRs

- opposite charge of leptons
- high-pt tau lepton(s)
- large $E_{\rm T}^{\rm miss}$
- ullet \geq 1 b-tagged jet

Important Backgrounds

- $t\bar{t}, t\bar{t}V$, diboson \rightarrow dedicated CRs
- V+jets, single top
 - ightarrow taken from simulation
- main challenge: events with mis-identified taus (fakes)
 - \rightarrow had-had: CR

 \rightarrow lep-had: fake factor method ⁶

Fake Factor Method: Idea & Application

Results

- using complete 36.1 fb⁻¹ of 2015 and 2016 data taking
- no significant excess beyond SM expectation observed

 \rightarrow set exclusion limits for this model

-				
	SR LH	SR HH		
Observed events	3	2		
Total background	$2.2 \pm 0.6 $	$1.9\ \pm 1.0$		
fake τ + e/μ	1.4 ± 0.5	_		
$t\overline{t}$ (fake $ au$)	_	$0.6\ \pm {0.7 \atop 0.6}$		
$t\overline{t}$ (real $ au$)	$0.22\ \pm 0.12$	$0.28 \pm {}^{0.30}_{0.28}$		
$t\overline{t} + V$	$0.25\ \pm 0.14$	0.26 ± 0.12		
diboson	$0.15\ \pm 0.11$	0.28 ± 0.13		
single-top	$0.10\ \pm {}^{0.24}_{0.10}$	0.13 ± 0.11		
V + jets	0.033 ± 0.011	0.26 ± 0.06		
others	0.082 ± 0.020	0.09 ± 0.04		
signal	3.3 ±0.7	$4.7 \hspace{0.2cm} \pm 1.2$		
$(m(\tilde{t}_1) = 1100 \text{ GeV}, \ m(\tilde{ au}_1) = 590 \text{ GeV})$				

Exclusion Limits for Benchmark Model

Model-Dependent Limits

- contour in $m(\tilde{t}_1)$ - $m(\tilde{\tau}_1)$ plane
- exclusion of $m(\tilde{t}_1)$ up to 1160 GeV and $m(\tilde{\tau}_1)$ up to 1000 GeV

Summary

- presented search for top squarks using final states with tau leptons
- outlined idea of fake factor method to estimate contribution of tau fakes
- $\bullet\,$ no hint for physics beyond the SM
- strong limits set on $m(\tilde{t}_1)$ and $m(\tilde{\tau}_1)$, reaching out to the TeV regime

BACKUP

ATLAS Detector

Particle Detection at ATLAS

Tau Reconstruction

Event Selection – Lep-Had

Variable	CR LH <i>tt</i> -real	VR LH <i>tt</i> -real	VR LH $t\bar{t}$ -fake (OS)	VR LH $t\bar{t}$ -fake (SS)	SR LH
$charge(\ell, \tau)$	opposite	opposite	opposite	same	opposite
$m_{T2}(\ell, \tau)$	$< 60 { m GeV}$	[60, 100] GeV	[60, 100] GeV	$> 60 { m GeV}$	$> 100{\rm GeV}$
$E_{\rm T}^{\rm miss}$	$> 210{\rm GeV}$	$> 210{\rm GeV}$	$> 150 { m GeV}$	$> 150 { m GeV}$	$> 230{\rm GeV}$
$m_{T}(\ell)$	$> 100 { m GeV}$	$> 100 { m GeV}$	$< 100 { m GeV}$	_	—
$m(\ell, \tau)$	_	_	$> 60 { m GeV}$	_	_

15

Event Selection – Had-Had

Preselection

- trigger requirements
- 2 Medium τ 's
- no add. leptons
- $p_T(jet_2) > 20 \text{ GeV}$
- *p*_T(*τ*₁) > 70 GeV
- $n_{b ext{-jet}} \geq 1$

	CR HH <i>tī</i> -fake	CR HH tt-real	VR HH $t\bar{t}$ -fake	VR HH <i>tī</i> -real	SR HH
$charge(\tau_1, \tau_2)$	—	opposite	—	opposite	opposite
$m_{T2}(\tau_1, \tau_2)$	$< 30 { m GeV}$	$< 30 { m GeV}$	[30, 80] GeV	[30, 80] GeV	$> 80{ m GeV}$
$E_{\rm T}^{\rm miss}$	$> 120{ m GeV}$	$> 120{ m GeV}$	$> 160 { m GeV}$	$> 160 { m GeV}$	$> 200{\rm GeV}$
$m_{T}(\tau_{1})$	$< 70{ m GeV}$	$> 70{ m GeV}$	$< 100 { m GeV}$	$> 100 { m GeV}$	—
$m(\tau_1, \tau_2)$	$> 70{ m GeV}$	$> 70{ m GeV}$	_	—	—

Common Control Regions

- sizable contribution of $t\bar{t} + V$ and VV in SRs
- single electron/muon triggers
- based on 2 lepton selection
- select events containing Z boson using m_Z^{closest}
- veto or require *b*-jets to enrich in VV and $t\bar{t} + V$

	$CR\ t\overline{t} + V$	CR VV
$p_{T}(jet_2)$	$> 26{ m GeV}$	$> 26{\rm GeV}$
m_Z^{closest}	[80, 100] GeV	[80, 100] GeV
n _{b-jets}	≥ 2	0
n _{lepton}	\geq 3	≥ 2
$n_{ m lepton} + n_{ m jet}$	≥ 6	—
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$	—	$> 15 \sqrt{{ m GeV}}$
$m_{\mathrm{T2}}(\ell,\ell)$	—	$> 120{ m GeV}$

Systematic Uncertainties

Experimental

- using systematic variations as released by CP groups, e.g. uncertainties on reconstruction and identification efficiencies, energy scales of physics objects, pile-up, ...
- derived dedicated set of uncertainties for fake estimate by variation of parameters in Fake Factor derivation:
 - choice of AntiID WP
 - definition of Measurement region
 - extrapolation in $m_{\rm T2}$
 - subtraction of real contribution

Theoretical

- comparison of nominal MC with alternative samples recommended by PMG for important backgrounds
- $t\bar{t}$ and singletop: uncertainties on hard-scatter modeling, fragmentation, radiation and interference in Wt channel
- $t\bar{t} + V$ and diboson: uncertainties on hard-scatter modeling and factorization and hadronization scales

Systematic Uncertainties

Dominating Uncertainties

- lep-had: Fake Factor Method
- had-had: tau energy scale, jet pile-up subtraction
- both channels: jet and tau energy calibration, pile-up reweighting, *E*_T^{miss} measurement

	SR LH	SR HH
Total systematic uncertainty	$\pm29\%$	$\pm53\%$
Fake-factor method	$\pm23\%$	_
Jet-related	$\pm9.3\%$	$\pm36\%$
Tau-related	$\pm7.2\%$	$\pm32\%$
Other experimental	$\pm6.1\%$	$\pm12\%$
Theory modelling	$\pm8.3\%$	$\pm20\%$
MC statistics	$\pm7.5\%$	$\pm17\%$
Normalization factors	$\pm4.8\%$	$\pm14\%$
Luminosity	$\pm0.3\%$	$\pm0.8\%$

Results - Overview

- small pulls in all VRs except in VR LH $t\bar{t}$ -real
- ca 2.3 σ excess in VR LH $t\bar{t}$ -real interpreted as statistical fluctuation

Model-Independent Limits

Signal channel	$\langle\epsilon\sigma angle^{95}_{ m obs}[{ m fb}]$	$S^{95}_{ m obs}$	$S_{ m exp}^{95}$	CL_b	p(s=0)~(Z)
SR LH	0.15	5.4	$4.5^{+2.6}_{-1.5}$	0.65	0.32 (0.47)
SR HH	0.13	4.7	$4.6^{+2.5}_{-1.5}$	0.52	0.48 (0.05)

Plots in SRs

10 ATLAS Preliminary Total SM ATLAS Preliminary Total SM Data • Data s = 13 TeV. 36.1 fb⁻¹ vs = 13 TeV. 36.1 fb⁻¹ ti (fake τ) fake r + e/u V+iets **I**tť 10 10 SR HH SRIH diboson tt (real τ) single top tf+V tt+V single top diboson V+jets Events / 80 GeV 10 GeV others others ···· m(t̃, t̃) = (1100,590) GeV $\cdots m(\tilde{t}_{v}, \tilde{\tau}_{v}) = (1100, 590) \text{ GeV}$ 8 10 Events / 10 10 Data / SM 1.5 0.5 Data / SM 150 200 250 300 350 150 200 250 300 350 E_T^{miss} [GeV] E_T^{miss} [GeV] ATLAS Preliminary s = 13 TeV, 36.1 fb⁻¹ Hotal SM ATLAS Preliminary • Data • Data H Total SM tt (real τ) tf (fake τ) **I**ti single top 10 10 SR HH SR LH V+jets single top fake r + e/µ V+jets diboson tt+V ∎tī+∨ dibosor 10 10 Events / 40 GeV > 10 90 02 10 others others ···· m(t̃, t̃) = (1100,590) GeV ···· m(t̃, t̃) = (1100,590) GeV Events 10 10 10 The state of the second Data / SM 1.5 0.5 2 1.5 0.5 0.5 140 20 40 60 80 120 160 40 60 80 100 120 140 160 180 200 0 $m_{T_2}(\tau_1, \tau_2)$ [GeV] m_{τ2}(I,τ) [GeV]

Plots in Had-Had CRs

Plots in Had-Had VRs

Plots in Lep-Had CRs

Plots in Lep-Had VRs

