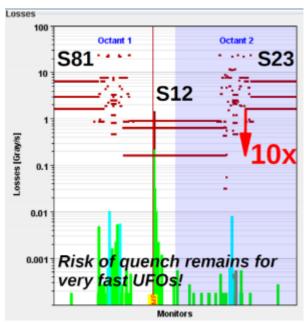
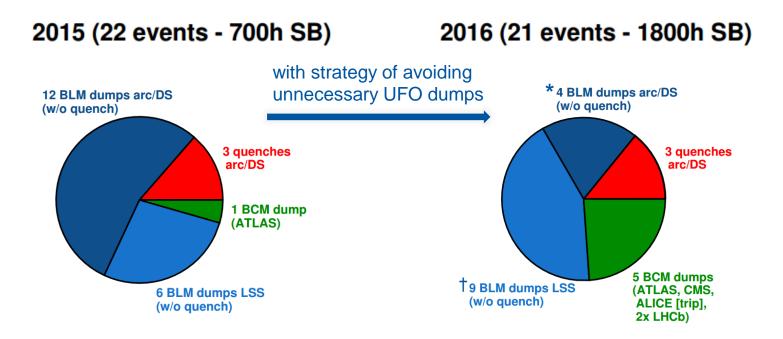


BLM Thresholds Changes in the EYETS 2016/2017

<u>C. Xu</u>, E.B. Holzer, M. Kalliokoski, A. Lechner, A. Di Mauro, T. Medvedeva, A. Mereghetti, S. Le Naour, M. Rijssenbeek, D. Wollmann On behalf of the BLM TWG with valuable inputs from the experiment groups

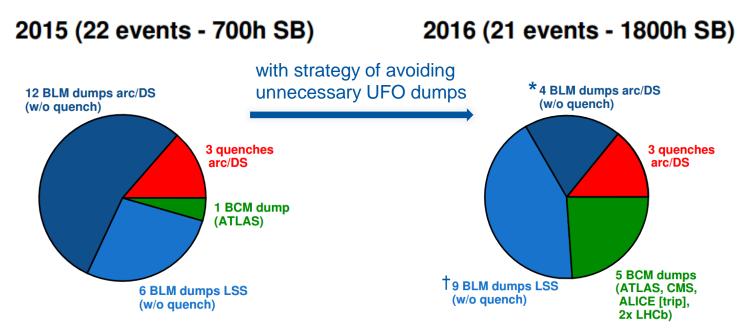

Introduction

- Five categories of the proposed threshold changes
 - 1. Reverting sector 1-2 BLM thresholds (309 BLMs)
 - 2. New thresholds for BLMs close to the ALICE experiment (3 BLMs)
 - 3. New thresholds for IPQ position 3 BLMs (64 BLMs)
 - 4. New BLMs at the new AFP RPs (2 BLMs)
 - 5. New BLMs at the new collimators in IR7 (3 BLMs)
- Implementation schedule


Sector 1-2 BLMs

- August 2016, suspected inter-turn short in MB.A31L2:
 - → to reduce the probability of UFO induced quenches in the ARC and DS of S12 for the MQ and MB
 - → Applied thresholds 3x below the quench level, 10x lower than other sector's arc BLM (short losses up to 640 μ s)
 - \rightarrow Special families are created for the affected BLMs
- After replacement of MB.A31L2 during EYETS 16/17:
 - → to revert S12 BLM thresholds to avoid unnecessary UFO dumps (consistent with other sectors' ARC/DS BLMs)
 - \rightarrow 3x above quench level for short losses up to 640 $\mu s,$ at quench level for longer period losses
 - → BLMs will be moved back to their respective families, monitor factor changed to standard values

UFO induced dumps and quenches

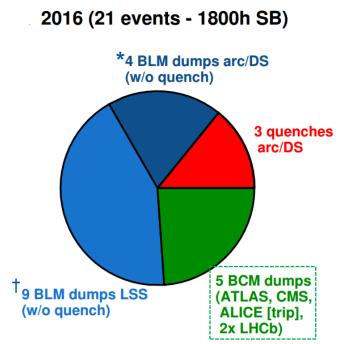

* 3 dumps in S12, after reducing the thresholds

 + with the increased thresholds would have avoided 6 dumps before July (low thresholds was necessary for MP3's MQM analysis on potential issues with symmetric quenches) only 1 dump in L1 (a UFO-hot region, 4 dumps before increase) after threshold increased in July 2016

Plots and data courtesy of A. Lechner @2016 Evian workshop

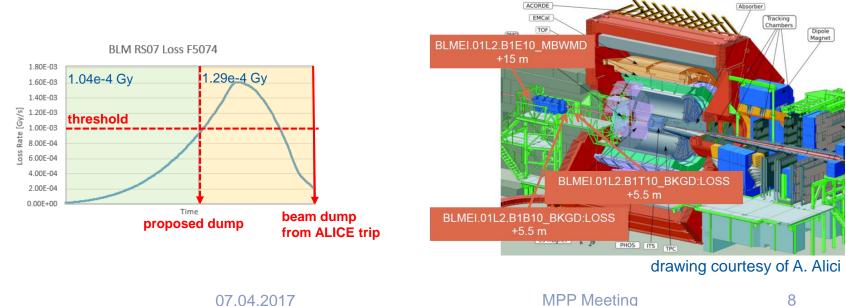
UFO induced dumps and quenches

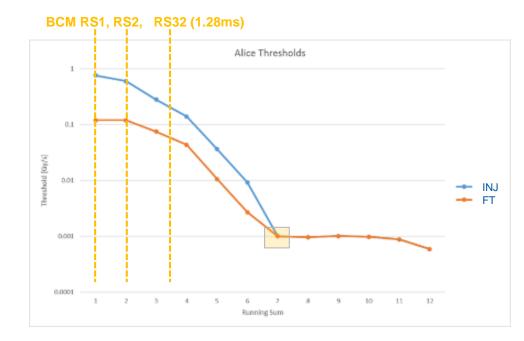
The "avoid UFO dump" strategy paid off in 2016


		Actual 2016	If we would have kept the 2015 threshold	If we would have applied a quench-preventing strategy a la S12 in all sectors
ARC/DS region	Dumps	4	11	71
0	Quenches	3	3	1 (UFO too fast)

Plots and data courtesy of A. Lechner @2016 Evian workshop

UFO-induced BCM dumps


- Ring BLMs around experiments show small signals (<10% of thresholds) during the ATLAS (2015, 2016) and LHCb (2x 2016) BCM dumps
- A dedicated BLM TWG meeting with the experiments (Feb. 2017):
 - ATLAS confirmed there is little margin to increase the thresholds
 - LHCb is investigating to adjust their BCM thresholds, which would require a modification of the firmware
 - The CMS UFO dump gives 93% loss/thr. ratio in the triplet BLM
 - The ALICE UFO event tripped ALICE gaseous detectors and silicon pixel detectors


Thresholds for 3 BLMs in ALICE cavern

- 3 BLMs installed in the ALICE cavern for monitoring purpose during LS1
 - 1 BLM on the compensator dipole, 2 next to the ALICE BCM
- Incident in 2016 (fill 5074):
 - Slow loss on TDI during an injection tripped TPC field cage
 - Loss duration out of BCM's integration range (40us \sim 1.28ms) •
 - Based on the analysis of BLM data, the BLM RS07 (82ms) data would be able to • dump the beam thus cut the dose on electronics

Thresholds for 3 BLMs next to ALICE

- 2017 proposal empirical threshsolds:
 - BLM thresholds consistent with BCM's thresholds up to 1.28 ms (cross calibrated with BCM using shots on TDI in 2015)
 - Based on BLM RS07 (~82ms) data from fill 5074 to define thresholds for RS07 -RS12
 - 3 BLMs will be connected to BIS
- New thresholds won't block normal beam operation
 - No unnecessary warning/dump, checked with 2016 all year data

IPQ position 3 BLM (Q4-Q6, all IRs except IR3/7)

- Current situation:
 - Master thresholds at electronic maximum, monitor factor ≠ 1 (Applied Thresholds = MT * MF)
- 2017 proposal empirical thresholds:
 - Position 3 families use 20x Position 1 Family MT
 - Unified MF = 0.333 for all IPQ families (except special BLMs related to injection loss)
- New thresholds are checked with 2016 beam loss data
 - Enough margin for normal beam operation, no unnecessary warning/dump

AFP RP BLMs

- 2 new BLMs for the new AFP Roman pots in cell 6L1
 - The AFP RPs are symmetric with respect to IP1
 - Use the same thresholds as 6R1 AFP RP BLMs (in operation since 2016)
 - Thresholds might need to be adjusted if the AFP RPs move closer to the beam in 2017 and trigger warnings

BLM at collimators in IR7

- New low-impedance collimator in cell 4R7, B2:
 - BLM renamed to reflect new element: BLMEI.04R7.B2I10_TCSPM.D4R7.B2
 - Add to BIS*, maskable at low intensity (MD)
 - Use electronics maximum as applied threshold
- New crystal collimators in cell 4R7 and 6R7, B2:
 - 2 new BLMs installed next to the goniometers
 - Not connected to BIS, only monitoring purpose

* TCSPM will always be open during beam operation except for MD, jaws position are interlocked, jaws reach limit will trigger beam dump.

Conclusion & Implementation

- 5 category of changes:
 - 1. Revert S12 arc/DS BLMs thresholds from quench-preventing to avoid UFO dumps (309 BLMs in 13 families)
 - 2. new ALICE BLM thresholds (3 BLMs, all add to BIS)
 - 3. new IPQ P3 BLM thresholds (64 BLMs in 3 families)
 - 4. Thresholds for new AFP RP BLMs: 2 BLMs
 - 5. Thresholds for IR7 new collimators BLMs: 3 BLMs (1 add to BIS)
- We don't expect the new thresholds to give unnecessary warning/dump signal according to 2016 beam loss data (AFP BLMs may get warnings)
- ECRs are under preparation
- Our plans are communicated with BE-CO (M. Sobieszek), necessary DB supports will be provided
- All changes (once approved) can be implemented to electronics before the beam commissioning (week of April 24.)

Thank you for your attention !

ALICE BLM cross check with 2016 data

- All 3 BLMs show similar response to beam loss:
 @Injection:
 - would give 7 warnings and 2 dumps (all 3 BLMs over thresholds) due to high injection loss (ALICE BCM dumped 5 times (3w+2d) in these cases)
 - would dump the F5074 which tripped ALICE (BLM RS07)
 - would give one dump during 2016 beam commissioning, injection collimator setup (dumped by IP2 collimator BLM) (BLM maskable)
 - @FT:
 - would dump the ALICE UFO event (all 3 BLM over thresholds, consistent with BCM)

IPQ P3 BLMs

- Most beam loss <1% of the proposed thresholds
- Exceptions:
 - In total, 2 fills would trigger warning level (30~40%) of IP8 P3 BLMs due to bad injection quality
 - 1 injection with fault MKI-B2 would trigger P3 BLM beam dump (already dumped by large number of IP8 BLMs)
 - During beam dump, few MQY P3 BLMs in IP6 would have loss over thresholds. (this is the same for current thresholds, and common for P1 & P2 BLMs in IP6)

BLMs in IR7

BLM	DCUM [m]	BIS
BLMTI.04R7.B2I10_TCSG.B4R7.B2	20004.03	1
BLMQI.04R7.B2I30_MQWA.A4R7	20054.29	1
BLMQI.04R7.B2I20_MQWB.4R7	20061.89	1
BLMTI.04R7.B2I10_TCSPM.D4R7.B2	20068.22	0?
BLMTI.04R7.B2I10_TCSG.D4R7.B2	20070.22	1
BLMQI.04R7.B2I10_MQWA.D4R7	20074.39	1

