Statistical Issues for Dark Matter Searches

> Louis Lyons Imperial College

> > DMUK, Edinburgh July 2017

Theme: Using data to make judgements about H1 (Bgd+ DM) versus H0 (just Bgd)

Possible Topics: Blind Analysis Why 5 σ for discovery? Significance P(A|B) \neq P(B|A) Meaning of p-values Wilks' Theorem LEE = Look Elsewhere Effect Background Systematics Coverage $p_0 \vee p_1$ plots Upper Limits (N.B. Several of these topics have no unique solutions from Statisticians)

Conclusions

Statistical Procedures

Parameter Determination / Upper Limits

e.g. M_{Higgs} = 80±2 Flux of WIMPs < ? in given mass range

Goodness of Fit

Is data consistent with 'No WIMPs' ?

Hypothesis Testing

Which theory fits data better? e.g. D.M. or no D.M. = Discovery or Exclusion (or cannot decide)

Decision Theory What expt should I do next? Involves cost functions

Data

1) Counting expt = 1 bin N_{obs} counts, with estimated bgd b (± σ_b)

2) On-off problem = 2 bins N counts in signal region, M counts in bgd

3) Distribution F(x) = many binsFit with $B(x) + \mu S(x)$

BAYES and FREQUENTISM: The Return of an Old Controversy

WHAT IS PROBABILITY?

MATHEMATICAL

Formal

Based on Axioms

FREQUENTIST

Ratio of frequencies as $n \rightarrow$ infinity

Repeated "identical" trials

Not applicable to single event or physical constant

BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)

Varies from person to person ***

Quantified by "fair bet"

LEGAL PROBABILITY

Even more important for UPPER LIMITS

Classical (Neyman) Confidence Intervals

Uses only P(data|theory)

u>

Specific Example μ = Temp at centre of Sun x = Measured solar ν flux

FIG. 1. A generic confidence belt construction and its use. For each value of μ , one draws a horizontal acceptance interval $[x_1, x_2]$ such that $P(x \in [x_3, x_2] | \mu) = \alpha$. Upon performing an experiment to measure x and obtaining the value x_0 , one draws the dashed vertical line through x_0 . The confidence interval $[\mu_1, \mu_2]$ is the union of all values of μ for which the corresponding acceptance interval is intercepted by the vertical line.

Methods for Upper Limits

- (a) p-values
- (b) Likelihoods
- (c) χ^2 (Neyman or Pearson versions)
- (d) Bayesian methods Sensitive to priors
- (e) Neyman construction for Upper Limits
- (f) Feldman-Cousins

(g)
$$CL_s = p_1/(1-p_0)$$

90% Classical 2-sided interval for Gaussian

 $\sigma = 1$ $\mu \ge 0$ e.g. $m^2(v_e)$

FIG. 3. Standard confidence belt for 90% C.L. central confidence intervals for the mean of a Gaussian, in units of the rms deviation.

$X_{obs} = 3$	Two-sided range for μ
$X_{obs} = 1$	Upper limit for μ =2.6
X _{obs} =-2	No region for µ

90% Classical Upper Limit for Gaussian

 $\sigma = 1$ $\mu \ge 0$ e.g. $m^2(v_e)$

Conclusion: Be very explicit about what your procedure is

FIG. 3. Standard confidence belt for 90% C.L. central confidence intervals for the mean of a Gaussian, in units of the rms deviation.

X_{obs} = 1 Upper limit = 2.3

Ilya Narsky, FNAL CLW 2000

(No systematics)

Upper Limit is very sensitive to method when n < b

Including systematics

Bayes: Uses priors to model uncertainties

Cousins-Highland: Bayesian systematics for frequentist ULs

Profile Likelihood: $\mathcal{L}_{\text{profile}}(\phi) = \mathcal{L}(\phi, \mathcal{V}_{\text{best}}(\mu))$

Dauncey, Kenzie, Wardle & Davies (IC, CMS): "Handling uncertainties in background shapes: the **discrete profiling method**", JINST 10 (2015) no.04, 04015 Has been used in CMS analysis of $H \rightarrow \gamma \gamma$

Sensitivity

Expected Upper Limit

Expected = Median, Mean, Asimov

(Can also give 68% and/or 90% bands)

Useful for:

- a) Planning stage of experiment
- b) Optimise search procedure
- c) See if observed limit is plausible
- d) Compare different experiments

$\mu \leq \mu \leq \mu_u$ at 90% confidence

Frequentist $\mathcal{\mu}_l$ and $\mathcal{\mu}_u$ known, but random $\mathcal{\mu}_l$ unknown, but fixed Probability statement about μ_{II} and μ_{II}

Bayesian

 μ_l and μ_u known, and fixed

unknown, and random μ Probability/credible statement about μ

Why 5σ for Discovery?

Statisticians ridicule our belief in extreme tails (esp. for systematics) Our reasons:

- 1) Past history (Many 3σ and 4σ effects have gone away)
- 2) LEE = Look Elsewhere Effect
- 3) Worries about underestimated systematics
- 4) Subconscious Bayes calculation

 $\frac{p(H_1|x)}{p(H_0|x)} = \frac{p(x|H_1)}{p(x|H_0)} * \frac{\pi(H_1)}{\pi(H_0)}$ $\frac{p(H_0|x)}{p(x|H_0)} = \frac{p(x|H_1)}{\pi(H_0)} * \frac{\pi(H_1)}{\pi(H_0)}$ $\frac{p(H_1|x)}{p(x|H_0)} = \frac{p(x|H_1)}{\pi(H_0)} * \frac{\pi(H_1)}{\pi(H_0)}$ $\frac{p(H_1|x)}{p(H_1|x)} = \frac{p(x|H_1)}{p(x|H_0)} * \frac{\pi(H_1)}{\pi(H_0)}$

"Extraordinary claims require extraordinary evidence"

N.B. Points 2), 3) and 4) are experiment-dependent

Alternative suggestion:

L.L. "Discovering the significance of 5σ " http://arxiv.org/abs/1310.1284

How many σ 's for discovery?

SEARCH	SURPRISE	IMPACT	LEE	SYSTEMATICS	Νο. σ
Higgs search	Medium	Very high	Μ	Medium	5
Single top	No	Low	No	No	3
SUSY	Yes	Very high	Very large	Yes	7
B _s oscillations	Medium/Low	Medium	Δm	No	4
Neutrino osc	Medium	High	sin²2ϑ, Δm²	No	4
$B_s \rightarrow \mu \mu$	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High/V. high	M, decay mode	Medium	7
(g-2) _µ anom	Yes	High	No	Yes	4
H spin ≠ 0	Yes	High	No	Medium	5
4 th gen q, l, v	Yes	High	M, mode	No	6
Dark energy	Yes	Very high	Strength	Yes	5
Grav Waves	No	High	Enormous	Yes	8

Suggestions to provoke discussion, rather than `delivered on Mt. Sinai'

Bob Cousins: "2 independent expts each with 3.5σ better than one expt with 5σ "

Resources

Books by Particle Physicists

Barlow, Benkhe, Cowan, James, Lista, Lyons, Roe,..... PDG: Sections on Probability, Statistics and Monte Carlo simulation.

PHYSTAT meetings

CERN and FNAL 2000 for U.L. PhyStat-nu, Japan and FNAL 2016 PhyStat-DM in 2018?

Statistics Committees

Collider expts: BaBar, CDF, ATLAS, CMS Maybe for neutrino expts Perhaps for DM

RooStats

e.g. Lyons + Moneta at CERN (2016) and at IPMU (2017) "Too easy to use"

Conclusions

Do your homework:

Before re-inventing the wheel, try to see if Statisticians have already found a solution to your statistics analysis problem. Don't use your own square wheel if a circular one already exists.

Try to achieve consensus

Good luck. Move from U.L. \rightarrow Discovery and Measurements