Response of the DAMPE BGO Calorimeter to Nuclide

Yifeng Wei
(On behalf of the DAMPE collaboration)

State Key Laboratory of Particle Detection and Electronics,
University of Science and Technology of China
02/10/2017
Outline

- DAMPE experiment
- BGO calorimeter
- Beam test of BGO calorimeter
- Orbit performance
- Summary
DAMPE Mission

- **DArk Matter Particle Explorer (DAMPE)** is an orbit experiment for detecting high energy cosmic ray
- Launch: 17th Dec. 2015, CZ-2D rocket
- Life time > 3 years

- Orbit: sun-synchronous
- Altitudes: 500 km
- Period: 94 minutes
- 5 million events/day
- 16 GB/day downlink
Scientific Objectives

<table>
<thead>
<tr>
<th>Science</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Matter</td>
<td>GeV-10TeV electron&gamma ray spectrum and space distribution</td>
</tr>
<tr>
<td>Cosmic ray Origin & propagation</td>
<td>(1)0.1–100TeV nuclide spectrum (P-Fe)</td>
</tr>
<tr>
<td></td>
<td>(2)gamma ray spectrum and space distribution of SNR</td>
</tr>
<tr>
<td>Gamma ray astronomy</td>
<td>(1)gamma ray sources</td>
</tr>
<tr>
<td></td>
<td>(2)GRB</td>
</tr>
</tbody>
</table>

CNINA
- Purple Mountain Observatory, CAS, Nanjing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of High Energy Physics, CAS, Beijing
- Institute of Modern Physics, CAS, Lanzhou

ITALY
- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento

SWITZERLAND
- University of Geneva
DAMPE Detector

- Charge measurement (dE/dx in PSD, STK)
- Precise tracking (STK + BGO)
- Precise energy measurement (BGO)
- Particle identification (BGO + NUD)

<table>
<thead>
<tr>
<th></th>
<th>DAMPE</th>
<th>Fermi</th>
<th>AMS02</th>
<th>CALET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calorimeter thickness (X0)</td>
<td>32</td>
<td>8.6</td>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>Energy resolution</td>
<td>1.5%@800 GeV</td>
<td>>8.5%@100 GeV</td>
<td>2%@100 GeV</td>
<td>2%@100 GeV</td>
</tr>
<tr>
<td>Angle resolution</td>
<td>0.1°@100 GeV</td>
<td>0.1°</td>
<td>0.1°</td>
<td>0.1°</td>
</tr>
<tr>
<td>Acceptance (m²Sr)</td>
<td>>0.3</td>
<td>>2</td>
<td>0.055</td>
<td>0.12</td>
</tr>
<tr>
<td>e/p discrimination</td>
<td>10^5</td>
<td>10^4~10^5</td>
<td>10^5</td>
<td>10^5</td>
</tr>
</tbody>
</table>
BGO Calorimeter

- 308 BGO bars (25*25*600 mm³)
- 14 layers, 22 bars per layer
- 32 radiation lengths
- 1.6 nuclear interaction lengths
- Energy range: 5GeV-10TeV (e/γ)
- Energy resolution: 1.5%@800GeV (e/γ)
- Energy range of proton/nuclide: 50GeV-100TeV
- Energy resolution of proton: <40%@800GeV

✦ Provide trigger
✦ Energy measurement
✦ e/p separation
✦ Track seed
Detection Unit of the BGO ECAL

- Energy response of one BGO bar is from 10MeV (0.5MIPs) to 2TeV (10^5MIPs)
- Two-end measurement of one BGO bar
- Multi-dynode readout of one PMT
Beam Test @ CERN

- **22 days, PS & SPS**
 - electron: 0.5 - 243 GeV
 - Proton: 3.5 - 10 GeV
 - gamma: 0.5 - 20 GeV
 - muon: 150 GeV

- **17 days, SPS**
 - Argon: 30, 40, 75 GeV/n
 - Proton: 30, 40 GeV

- **21 days, SPS**
 - Proton: 400 GeV
 - electron: 20 - 150 GeV
Electron Response in the BGO Calorimeter (Beam Test)

Ion Beam Test Set up & Charge Measurement

Charge identification with dE/dx detectors before the BGO Calorimeter
MIP events in first layer of the BGO ECAL were utilized to identify charge.
Quenching Effect of the BGO Crystal

- Quenching effect was observed in the case of $Z>5$
- $QF = \frac{\text{Peak}_{\text{Data}}}{\text{Peak}_{\text{Simu}}}$
Energy Response to Nuclide

- A pre-selection is applied on nuclide data
 - Pass high energy trigger
 - Shower starts at the top of the BGO calorimeter
Energy Response to Nuclide (40 GeV/n)

MC: Geant4.10.1 QGSP_FTFP_BERT

Helium

Carbon

Aluminum

Argon
Energy Response to Nuclide (40 GeV/n)

Energy Fraction = Energy Deposition/Incident Energy

![Graphs showing Energy Fraction and Energy Resolution vs. Z](image)
Energy Response to Nuclide (75 GeV/n)

- Helium
- Carbon
- Sulfur
- Argon

Preliminary
Energy Response to Nuclide (75 GeV/n)

Energy Fraction = Energy Deposition/Incident Energy
Energy Fraction vs Incident Energy

Carbon

Oxygen

Data

Simu
Orbit Performance

Launched on 17th Dec. 2015
Jiuquan Satellite Launch Center, Gobi desert
Orbit Calibration with Nuclide

- No mono energy source in space
- Proton/Nuclide MIP events are utilized to do energy calibration

1 MIP ≈ 23 MeV
MIP Events of Nuclide

Boron

\[\chi^2 / n df = 5.908 / 4 \]
\[\text{Prob} = 0.2062 \]
\[\text{Constant} = 665.8 \pm 16.7 \]
\[\text{Mean} = 544.8 \pm 0.8 \]
\[\text{Sigma} = 36.3 \pm 0.8 \]

Carbon

\[\chi^2 / n df = 7.067 / 5 \]
\[\text{Prob} = 0.2157 \]
\[\text{Constant} = 752.4 \pm 15.5 \]
\[\text{Mean} = 785.1 \pm 1.3 \]
\[\text{Sigma} = 59.38 \pm 1.85 \]

Oxygen

\[\chi^2 / n df = 8.579 / 7 \]
\[\text{Prob} = 0.2843 \]
\[\text{Constant} = 379.6 \pm 10.6 \]
\[\text{Mean} = 1210 \pm 1.3 \]
\[\text{Sigma} = 51.45 \pm 1.29 \]

Iron

\[\chi^2 / n df = 19.38 / 10 \]
\[\text{Prob} = 0.03573 \]
\[\text{Constant} = 76.79 \pm 4.03 \]
\[\text{Mean} = 8690 \pm 20.8 \]
\[\text{Sigma} = 340.9 \pm 24.1 \]
Long Time Stability

- **Boron**
- **Carbon**
- **Oxygen**
- **Iron**
Summary

- A BGO calorimeter was built for DAMPE mission
- Ion beam test was performed for the BGO ECAL
- Quenching effect of BGO crystal was observed
- More than 30% energy deposited in the BGO ECAL
- Energy resolution is better than 30%
- Nuclide MIP is good reference for energy measurement on orbit
Summary

• A BGO calorimeter was built for DAMPE mission
• Ion beam test was performed for the BGO ECAL
• Quenching effect of BGO crystal was observed
• More than 30% energy deposited in the BGO ECAL
• Energy resolution is better than 30%
• Nuclide MIP is good reference for energy measurement on orbit

Thank you
Backup
Energy Response to Nuclide (40 GeV/n)

- **Helium**
- **Lithium**
- **Boron**
- **Carbon**
Energy Response to Nuclide (40 GeV/n)

- **Nitrogen**
- **Oxygen**
- **Neon**
- **Magnesium**
Energy Response to Nuclide (40 GeV/n)

- **Aluminum**
- **Silicon**
- **Sulfur**
- **Argon**
Energy Response to Nuclide (75 GeV/n)

- **Helium**
- **Carbon**
- **Oxygen**
- **Neon**
Energy Response to Nuclide (75 GeV/n)

- **Magnesium**
- **Silicon**
- **Sulfur**
- **Argon**
Different MC Model (40 GeV/n)

Carbon

Counts

Energy_in_ECAL(GeV)

FTFP_BERT
QGSP_BERT
QGSP_FTPP_BERT