

High granularity digital Si-W electromagnetic calorimeter for forward direct photon measurements at LHC

T. Peitzmann (Utrecht University/Nikhef) for the ALICE FoCal Collaboration

Outline

- Introduction
 - photons as a probe for gluon saturation
- FoCal an ALICE upgrade proposal
 - baseline design
 - performance
- Research and Development
 - high-granularity digital EM calorimeter
- Summary

Photons as Probe for Gluon Saturation

from QCD evolution (DGLAP, BFKL):

- gluon density increases with Q² and 1/x
 - leads to very high gluon density
 - problems with unitarity(?)
- for high density non-linear processes become important
- gluon saturation below saturation scale
 - enhanced in nuclei $Q_s^2(x) \approx \frac{\alpha_S}{\pi R^2} x G(x,Q^2) \propto A^{1/3} \cdot x^{-\lambda}$

most promising probe: forward direct photons clear sensitivity for small *x*, no final state interaction

NLO pQCD calculations with shadowing (EPS09) Helenius, Eskola, Paukkunen, arXiv:1406.1689

FoCal in ALICE

electromagnetic calorimeter for γ and π^0 measurement

preferred scenario:

at z ≈ 7m (outside solenoid magnet)
3.3 < η < 5.3
(space to add hadronic calorimeter)

under internal discussion possible installation in LS3

advantage in ALICE: forward region not instrumented, "unobstructed view"

- main challenge: separate γ/π^0 at high energy
- need small Molière radius, high-granularity read-out
 - Si-W calorimeter, effective granularity $\approx 1 \text{ mm}^2$

note: two-photon separation from π^0 decay ($p_T = 10 \text{ GeV}/c$, y = 4.5, $\alpha = 0.5$) is d = 2 mm!

FoCal Strawman Design

Direct y Performance in pp

- combined rejection (invariant mass + shower shape, isolation)
- combined suppression of background relative to signal: factor ≈ 10
 - · largely p_T -independent

Direct γ uncertainty

FoCal R&D: Si-W pixel and pad readout

24 layer pixel detector

Pad layer integration

Several groups involved: Full prototype with pixel detectors CMOS (MIMOSA) 39M pixels, 30µm pitch use synergy with R&D for ALICE ITS upgrade Full prototype with pad readout

Performed systematic tests: Test beam data from 2 to 250 GeV (DESY, PS, SPS) Cosmic muons

Utrecht/Nikhef (Netherlands), Bergen (Norway), Tsukuba, Nara, Hiroshima (Japan), ORNL (US) VECC Kolkata, BARC Mumbai (India)

R&D with High-Granularity Digital Calorimeter Prototype

R&D Activities with Si-pad/W Calorimeter Prototypes (Japan/ORNL, India) not covered here

Prototype Design

half layer with two sensors and 1.5mm W

two half layers mounted together with opposite orientation to minimise dead areas

total layer thickness $\approx 1 X_0$

full active layer with readout boards within 1mm

A: MIMOSA sensor B: PCB C: tungsten

extremely compact design

allows for high pixel density and small Moliere radius

MAPS sensor: MIMOSA23 (IPHC) full frame readout

Sensor and Readout

read out via 4 Spartan and 2 Virtex FPGAs

continuous data stream of 8GB/s

current sensor too slow (642 μ s/frame)

real detector will likely use derivative of ALPIDE (ALICE-ITS upgrade)

Single Event Hit Distribution

very high hit density in shower core

- not possible to reconstruct single shower particles from pixel clusters
- have to use number of hits as response (not number of clusters)
- saturation (overlap of clusters) likely for very high energy

Detector Response

- minimum ionising particle (MIP) peak from pion tracks
- pedestal: noise distribution of full prototype

- response to electrons from SPS test beam
- calculated from per-event hit density distributions

R&D - Lateral Profiles

average hit densities as a function of radius for different layers

- low energy: early shower maximum, profiles broaden and decay with depth
- high energy: profiles broaden with depth, increase up to shower maximum shower measurements with unprecedented detail!

R&D - Energy Linearity

detector response from integrated event-wise hit densities

- fit with linear and power law function, good linearity (power $\beta = 0.98$) note - not yet corrected:
- different calibration for low and high energy
- small effects of saturation at high energy

R&D - Energy Resolution

$$\frac{\sigma_E}{E} = a \oplus \frac{b}{\sqrt{E/\text{GeV}}} \oplus \frac{c}{E/\text{GeV}}$$

 $a = (2.95 \pm 1.65)\%$ $b = (28.5 \pm 3.8)\%$ c = 6.3%

noise term *c* compatible with pedestal width (fixed in fit)

recent work on improved calibration

slightly worse than MC simulation, not unexpected

- certainly sufficient for forward detector
- note: sampling fraction < 1/1000
- possibly still improve calibration, better sensor (ALPIDE) in the future proof of principle of digital calorimetry

R&D - Cumulative Lateral Profiles

extract cumulative distributions both per layer and integrated

- some lateral leakage at higher energy small Moliere radius: $R_M \approx 11 mm$
 - \approx 75% of hits within R = 5mm, 50% within R = 3mm, ...

R&D - Hadron Rejection

hadron rejection for realistic pion momentum spectrum:

- cases of high deposited energy suppressed from low interaction probability
- additional rejection for low deposited energy from shower shape

Summary

- Forward photon measurements at LHC provide unique opportunity for low-x physics
 - needs detector upgrade: proposed FoCal detector in ALICE
- Extensive R&D with high granularity digital calorimeter prototype
 - proof of principle of digital calorimetry
 - unique detector: smallest R_M , highest granularity
 - enormous potential (two-shower separation, hadron rejection, PFA?)
 - should allow tuning of GEANT parameters
 - see also:
 - N. van der Kolk (talk today, 15:20)
 - first paper submitted to JINST, https://arxiv.org/abs/1708.05164
- Next steps

•

- develop fast sensor (ALPIDE)
- more corrections (saturation, improved calibration)

Backup Slides

ALICE Detector & Upgrades

Low Granularity Measurement

low granularity (1cm2) does not allow efficient decay rejection direct photon/all ≈ 0.1 for all pT significant measurement not possible at low pT

NB: conditions similar to LHCb

Electromagnetic Processes

direct- γ , Compton (LO)

g

- DIS and Drell-Yan are equivalent processes
 - crossing symmetry
 - sensitivity to gluons only at NLO
 - e.g. virtual qg-Compton
- main disadvantage of DY: very low cross section
 - not accessible in pA •

- real photons: sensitivity to gluons at LO, clear kinematic relation
 - higher order corrections?

x-Sensitivity

- x₂ distributions for forward production
 - LO production from PYTHIA
 - D⁰ (LHCb) vs prompt γ (FoCal)
- apparent maximum at $x \approx 10^{-5}$
 - beware of log(x) scale!
 - significantly larger mean value
- significant advantage of proposed direct photon measurement relative to charm in LHCb

EM Probes: Kinematic Coverage

Theoretical Expectations for R_{pPb}

 $p + Pb / p + p \rightarrow \gamma + X$, $\sqrt{s} = 8000 \,\text{GeV}$

early CGC calculation:

recent CGC calculation:

strong suppression of photon production $R_{pPb} \approx 0.2-0.4$

shows larger $R_{pPb} \approx 0.7-0.8$

currently large uncertainty in CGC prediction, but also larger uncertainty in nuclear PDFs (EPPS16)

Longitudinal Profiles - MC Comparison

significant difference between data and MC

- larger number of hits in data for early layers
- shower maximum reached earlier than in MC
- similar effect observed in CALICE AHCAL!

Longitudinal Profiles

average hit densities as a function of depth for different radial positions

different view of 3-dimensional info

Lateral Profiles - MC Comparison

also differences to MC in lateral profiles

consistent with difference in longitudinal profiles: larger number of hits in early layers

more details significant?

- narrower profiles?
- drop in hit density in central core?
 possible issues: imperfect

implementation of charge diffusion in MC?

R&D - Position Resolution

calculate difference of position from

- cluster in layer 0 and
- center of gravity of shower in layers 1 - 23

single shower position resolution obtained from width of residuals

can also provide excellent two-shower separation

Two Shower Separation

display of single event (with pile-up) from 244 GeV mixed beam

evaluate separation capability: core energy calculate shower energy in cylinder of finite radius study as function of radius

R&D Results: Core Energy

detector response (number of hits)

energy resolution

reasonable energy resolution of pixel calorimeter, sufficient for conceptual design

response and resolution for core energy hardly affected down to r = 5mm: adequate for very high particle density

R&D Results: Single Event Profiles

electron

pion

electron showers have well defined profile, very narrow shower core pion showers show much larger fluctuation, often much wider