CHEF Conference in Lyon 2017

Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

On behalf of the CMS Collaboration

Thorben Quast

06 Oct 2017
Endcap calorimeters must be upgraded for HL-LHC

Calorimeters designed for radiation dose equivalent to 500fb^{-1}.

- Replacement of CMS’ complete endcap calorimeter during HL-LHC upgrade.

HL-LHC Conditions

Current design: $10^{34} \text{cm}^{-2} \text{s}^{-1}$

- Increased pileup

Current design: $10^{34} \text{cm}^{-2} \text{s}^{-1}$

HL-LHC: $10^{35} \text{cm}^{-2} \text{s}^{-1}$

- Radiation hardness

Thorben Quast - 06 Oct 2017
Key parameters:
- $1.5 < |\eta| < 3.0$
- $\sim 600 \text{ m}^2$ silicon
- $\sim 500 \text{ m}^2$ scintillator
- $\sim 6 \text{ M Si-channels, } 0.5$ and 1 cm^2 cell-size

<table>
<thead>
<tr>
<th></th>
<th>Sensor</th>
<th>Absorbers</th>
<th>Sampling layers & depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-E</td>
<td>silicon</td>
<td>Cu, CuW, Pb</td>
<td>28: $25 \lambda_0$, $\sim 1.3 \lambda$</td>
</tr>
<tr>
<td>CE-H</td>
<td>silicon & scintillator</td>
<td>stainless steel</td>
<td>24: $\sim 8.5 \lambda$</td>
</tr>
</tbody>
</table>
Key parameters:
• $1.5 < |\eta| < 3.0$
• ~600 m2 silicon
• ~500 m2 scintillator
• ~6 M Si-channels, 0.5 and 1 cm2 cell-size

<table>
<thead>
<tr>
<th></th>
<th>Sensor</th>
<th>Absorbers</th>
<th>Sampling layers & depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-E</td>
<td>silicon</td>
<td>Cu, CuW, Pb</td>
<td>28: 25 X_0, ~1.3 λ</td>
</tr>
<tr>
<td>CE-H</td>
<td>silicon & scintillator</td>
<td>stainless steel</td>
<td>24: ~8.5 λ</td>
</tr>
</tbody>
</table>

The other four HGCal related talks at CHEF 2017

3. “Large-Area Silicon Detectors for the CMS High Granularity Calorimeter”, Elias Pree (06 Oct at 10:00).
Key parameters:
- $1.5 < |\eta| < 3.0$
- ~600 m2 silicon
- ~500 m2 scintillator
- ~6 M Si-channels, 0.5 and 1cm2 cell-size

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Absorbers</th>
<th>Sampling layers & depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-E</td>
<td>silicon</td>
<td>Cu, CuW, Pb</td>
</tr>
<tr>
<td>CE-H</td>
<td>silicon & scintillator</td>
<td>stainless steel</td>
</tr>
</tbody>
</table>

→ This talk: HGCal beam tests

✓ Successful series of beam test of CE-E part prototype at FNAL and CERN in 2016.

_extended setup including CE-H (Si) parts and CALICE AHCAL under test this year.

The other four HGCal related talks at CHEF 2017
3. “Large-Area Silicon Detectors for the CMS High Granularity Calorimeter”, Elias Pree (06 Oct at 10:00).
Module construction for the beam tests

- Module assembled as glued stack of **baseplate**, **Kapton**, **Si sensor** and **PCB**.

Si sensor
- 6” silicon sensors:
 - n-type, 128 cells.
 - 1 cm² cell-size.
 - 300 μm depleted region.

baseplate
- EM: CuW
- Hadronic: Cu

Kapton
- Gold plated.

PCB
- **Skiroc2-CMS** ASIC, 64 ch., 4 chips/module
- Developed for CALICE and adjusted for CMS requirements.
- Skiroc2 ASIC in 2016, 2 chips/module.
Module construction for the beam tests

- Module assembled as glued stack of **baseplate**, **Kapton**, **Si sensor** and **PCB**.

baseplate
- EM: CuW
- Hadronic: Cu

Kapton
- Gold plated.

Si sensor
- 6" silicon sensors:
 - n-type, 128 cells.
 - 1 cm² cell-size.
 - 300 µm depleted region.

PCB
- **Skiroc2-CMS** ASIC, 64 ch., 4 chips/module
- Developed for CALICE and adjusted for CMS requirements.
- Skiroc2 ASIC in 2016, 2 chips/module.

Thorben Quast - 06 Oct 2017
Module construction for the beam tests

- Module assembled as glued stack of **baseplate**, **Kapton**, **Si sensor** and **PCB**.

Baseplate
- EM: CuW
- Hadronic: Cu

Kapton
- Gold plated.

Si sensor
- 6” silicon sensors:
 - n-type, 128 cells.
 - 1 cm² cell-size.
 - 300 μm depleted region.

PCB
- **Skiroc2-CMS** ASIC, 64 ch., 4 chips/module
- Developed for CALICE and adjusted for CMS requirements.
- Skiroc2 ASIC in 2016, 2 chips/module.

Hanging file design for flexible insertion:
- Structure for CE-H(Si)
- Module screwed to Cu cooling plate

Copper cooling plate

Thorben Quast - 06 Oct 2017
Tests of silicon sensors at CERN

- Perform IV and CV measurements on probe station at FNAL and CERN to characterise sensors used in test beam.

Probe-card measurement in probe station @CERN

- Contact all cells with spring-loaded pins.
- All neighbour cells biased.
- Automatic switching between cells through custom designed switching unit.

Average full-cell leakage current

! More on the HGCAL sensors by Elias Pree in his talk “Large-Area Silicon Detectors for the CMS High Granularity Calorimeter” today at 10:00.
Setup and results with the CE-E prototype in 2016
Tests of CE-E with beam setups at FNAL and CERN

- Common effort between CERN and FNAL in test beams 2016 to test a CE-E prototype.

Fermilab
- Up to **16 HGC modules** tested.
- **Electron** beam with **4-32 GeV**.
- **0.6-15 X₀ tungsten** absorber configuration.
- 120 GeV protons.

CERN
- Up to **8 HGC modules** tested.
- **Electron** beam with **20-250 GeV**.
- **6-15 X₀ & 5-27 X₀ tungsten** absorber configurations.
- 125 GeV muons and pions.
Main goals for test beams 2016:

1. Proof of concept of the proposed design with a preliminary chip (Skiroc2).
2. Comparison of results to simulation.

Fermilab
- Up to 16 HGC modules tested.
- Electron beam with 4-32 GeV.
- 0.6-15 X_0 tungsten absorber configuration.
- 120 GeV protons.

CERN
- Up to 8 HGC modules tested.
- Electron beam with 20-250 GeV.
- 6-15 X_0 & 5-27 X_0 tungsten absorber configurations.
- 125 GeV muons and pions.

+ detailed GEANT IV based simulations for both setups
Electron induced showers visualised in 2016

Fermilab: 32 GeV electron passing through 15 X_0.

CERN: 250 GeV electron passing through 27 X_0.
Main results from 2016 are documented for the technical design report and are targeted for publication in NIM/JINST:

- Calibration, linearity, shower shapes and energy resolution of 8-16 modules.
- Position resolution of incident electrons as a function of their energy.
- Precision timing results of the full module at CERN.

![Energy resolution](image1.png)

![Longitudinal shower shape](image2.png)

![Precision timing results](image3.png)
Results of 2016 are summarised

Main results from 2016 are documented for the technical design report and are targeted for publication in NIM/JINST:

✓ Calibration, linearity, shower shapes and energy resolution of 8-16 modules.
✓ Position resolution of incident electrons as a function of their energy.
✓ Precision timing results of the full module at CERN.

Overall agreement between data and simulation within ~percents.
➡ Basic validation of the simulation of the CE-E part.
Results of 2016 are summarised

Main results from 2016 are documented for the technical design report and are targeted for publication in NIM/JINST:

✓ Calibration, linearity, shower shapes and energy resolution of 8-16 modules.
✓ Position resolution of incident electrons as a function of their energy.
✓ Precision timing results of the full module at CERN.

Overall agreement between data and simulation within ~percents.

➡ Basic validation of the simulation of the CE-E part.
Main results from 2016 are documented for the technical design report and are targeted for publication in NIM/JINST:

- Calibration, linearity, shower shapes and energy resolution of 8-16 modules.
- Position resolution of incident electrons as a function of their energy.
- Precision timing results of the full module at CERN.

Overall agreement between data and simulation within ~percents.

Basic validation of the simulation of the CE-E part.
Main results from 2016 are documented for the technical design report and are targeted for publication in NIM/JINST:

✓ Calibration, linearity, shower shapes and energy resolution of 8-16 modules.
✓ Position resolution of incident electrons as a function of their energy.
✓ Precision timing results of the full module at CERN.

Overall agreement between data and simulation within ~percents.
Main results from 2016 are documented for the technical design report and are targeted for publication in NIM/JINST:

✓ Calibration, linearity, shower shapes and energy resolution of 8-16 modules.

✓ Position resolution of incident electrons as a function of their energy.

✓ Precision timing results of the full module at CERN.

Overall agreement between data and simulation within ~percents. ➡ Basic validation of the simulation of the CE-E part.
Towards the extended setup in 2017
High ambitions for beam tests in 2017

Goal as defined at beginning of 2017: Prototype with 112 6”-modules
• 28 layers with one module in CE-E, 12 layers with 7 modules in CE-H (Si).
• Gradual upscaling of the system towards a full CE- E+H (Si)+H (scint.) prototype.

➡ Extend and consolidate measurements from 2016.
➡ Measurements on hadron-induced showers with HGC modules.
High ambitions for beam tests in 2017

Goal as defined at beginning of 2017: Prototype with 112 6”-modules
- 28 layers with one module in CE-E, 12 layers with 7 modules in CE-H (Si).
- Gradual upscaling of the system towards a full CE-E+H (Si)+H (scint.) prototype.

➡ Extend and consolidate measurements from 2016.
➡ Measurements on hadron-induced showers with HGC modules.

Main bottleneck was the PCB and subsequent module production.
High ambitions for beam tests in 2017

Goal as defined at beginning of 2017: Prototype with 112 6”-modules

- 28 layers with one module in CE-E, 12 layers with 7 modules in CE-H (Si).
- Gradual upscaling of the system towards a full CE-E+H (Si)+H (scint.) prototype.

➡ Extend and consolidate measurements from 2016.
➡ Measurements on hadron-induced showers with HGC modules.

Main bottleneck was the PCB and subsequent module production.

Revised strategy:
- Period 1: 8-15 May
 - One CE-E Module.
- Period 2: 31 May-7 June
 - As many modules as possible.
- Period 3: 12 July-19 July
 - CE-E + CE-H (Si) + AHCAL

• Less layers.
• Less modules per layer.

Original ambition: CE-E, CE-H (Si), CE-H (scint. +SiPM) (CALICE AHCAL prototype)
Realised prototype:
Skiroc2-CMS is the new readout chip in 2017

- Skiroc2-CMS is based on the CALICE Skiroc2.
- Shapes, amplifies and digitises signals from the silicon sensors.
- 64 channels.
- **13 SCA rolling analog memory** with 40MHz clock.
 - Overwrites every 13x25ns.
- Four quantities read out: Low- and High gain, “Time over Threshold” (ToT) and “Time of Arrival” (ToA).
Skiroc2-CMS is the new readout chip in 2017

- Skiroc2-CMS is based on the CALICE Skiroc2.
- Shapes, amplifies and digitises signals from the silicon sensors.
- 64 channels.
- 13 SCA rolling analog memory with 40MHz clock.
 - Overwrites every 13x25ns.
- Four quantities read out: Low- and High gain, “Time over Threshold” (ToT) and “Time of Arrival” (ToA).
- Larger pulses stay longer over some threshold.
 - ToT is a measure of the signal pulse amplitude.
 - ToT can be used for energy reconstruction when low gain is saturated (left plot).

left: Relation of HG-LG and LG-TOT with test pulses in the lab.
New DAQ hard- and software in 2017

HGCAL Data Flow

- **Readout boards** control hexaboard and read data.
- Multiple hexaboard are connected to one readout board.
New DAQ hard- and software in 2017

HGCAL Data Flow

- Network switch
- Ethernet 5m cat 6a 10 Gbps
- PC
- Temporary data storage
- For DQM
- Ethernet 5m cat 6 1 Gbps
- RPI3
- Master ORM
- Slave ORM
- Slave ORM
- Slave ORM
- Slave ORM
- Readout board
- BV distribution (LEMO)
- HDMI cable ~2m (signal & SV)
- AGW28 or 26
- Bias voltage (LEMO ~2m)
- Interposer board
- Bias voltage (wires)
- MAX10
- Hexboard
- BV input (SMA)

DAQ software based on EUDAQ1 and IPBUS.

- Producers for:
 - HGCAL
 - AHCAL
 - Wire Chambers
- Built-in **DQM**.

Readout boards control hexaboard and read data.

- Multiple hexaboard are connected to one readout board.

Thorben Quast - 06 Oct 2017
New DAQ hard- and software in 2017

DAQ software based on EUDAQ1 and IPBUS.

- Producers for
 ✓ HGCAL
 ✓ AHCAL
 ✓ Wire Chambers
- Built-in **DQM**.

Positive aspects:
- The DAQ is cheap and scalable.
- Reuses existing components from CMS: The Optical Readout Modules (ORMs).
- Simple Raspberry PIs as interface to computers.
- Readout using IPBUS protocol works well and reliably.

HGCAL Data Flow

- **Readout boards** control hexaboard and read data.
- Multiple hexaboard are connected to one readout board.
Multi-module setup with CALICE AHCAL in July

- CE-E part: Hanging file structure with lead absorber.
- CE-H (Si) part: Hanging file structure with iron absorber.
- Data taking together with CALICE AHCAL prototype as CE-H (scint.+SiPM) part.

Total detector: ~9.4 λ_0

July 2017 Setup at CERN SPS

"Prototype tests for a highly granular scintillator-based hadron calorimeter" by Felix Sefkow.
Multi-module setup with CALICE AHCAL in July

- CE-E part: Hanging file structure with **lead** absorber.
- CE-H (Si) part: Hanging file structure with **iron** absorber.
- Data taking together with CALICE AHCAL prototype as CE-H (scint.+SiPM) part.

![Image](image_url)

- 2 or 3 modules in the **CE-E** part.
- Limited number of layers: 4 instead of 12 in **CE-H (Si)**.
- Only 1 or 3 modules per layer instead of 7.
Hadron and electron showers are seen

Thorben Quast - 06 Oct 2017
O(10^6) events are simulated

- GEANT4 based simulation of the prototype using CMSSW.
 - “FTFP_BERT_EMM” physics list.
- CE-E section: 14 layers of Pb absorber and 2 sensitive silicon layers.
- CE-H (Si) section: 12 layers of Fe absorber and 4 sensitive silicon layers.
+ Simulation of AHCAL.
Analysis of the HGCal July Data

First results are shown for:

- MIP signals
- Energy sums
- Shower shapes
Full HGCal reconstruction workflow

ORM data
~10GB/22k events

UnpackRaw

Skiroc2CMS
~1.6 GB/22k events

Pedestals

RawHits
~0.9 GB/22k events

Common Mode Noise

Skiroc2CMS
~1.6 GB/22k events

UnpackRaw

ProduceRawHits

ProduceRecHits

HG/LG/TOT Correlations

RecHits
~0.1 GB/22k events

GainCalibration

RecHits data format (~100MB/22k events):

- Pedestals and common mode noise is subtracted.
- CMS Preshower Pulse fit is performed to the time samples.
- Switches between HG/LG/TOT —> one energy per hit.
- Location of each hit in the detector.

Input files
Reconstructed files
Meta files

Reconstruction tasks
Meta tasks
Visualisation/Analysis tasks

Inspection of output by analyst

Thorben Quast - 06 Oct 2017
MIP signals are seen despite high noise

- MIPs from parasitic muons from experiments further upstream in the area.
- Large spread \rightarrow Large amplitude of noise peak.
 + Width smears into the expected MIP signal for most channels!
 - Event selection with wire chamber information.

- Procedure similarly successful for other channels.
 - Different data streams can be synchronised & MIP signal \sim50 ADC counts.

Thorben Quast - 06 Oct 2017
Energy sums - We do have a calorimeter

- Pedestal and common mode noise are subtracted.
- Sum of fitted pulse amplitudes over all cells in all layers. No weighting.
- Preliminary LG-TOT is included.

Simple cuts:

- Electron suppression: \(\frac{E_{CE-E}}{E_{CE-H(Si)}} < 0.03 \)
- Inhibit noise contribution: 4 MIP cut on cells prior to summing.

Much room for improvement:

- Smarter selection of cells (clustering)
- \(\frac{dE}{dX} \) weights per layer

Thorben Quast - 06 Oct 2017
Transverse shower size - Data vs. sim.

Definitions:
• E7: Sum of reconstructed energies of cell with most energy plus of one ring around it.
• E19: Sum of reconstructed energies of cell with most energy plus of two rings around it.

E7/E19 ~ transverse spread of the shower at a given sampling depth. E7/E19 is computed for each layer in an event.

E7/E19 in data and compared to simulation \((E_{CE-E}/E_{CE-H(Si)} < 0.03)\)

- No obvious disagreement for most layers “out-of-the-box”.
- Discrepancies to simulations are under investigation.
Outlook: Combination with the AHCAL data

• Beam hits AHCAL centrally.

• AHCAL has operated well.
 ➡ Good data quality.

Offline analysis combined with HGCal data soon.

300 GeV π

AHCAL Online Analysis:
• minimal selection: =>3 hits
• very preliminary calibration
Summary

- CMS-HGCal TB related results with the CE-E prototype with data recorded in 2016 are summarised for publication.

- The upgraded CMS-HGCal prototype including FH-part and CALICE AHCAL has been tested with electrons and pions at CERN this year.

- Setup had to be reduced compared to the initial plan for the 2017 tests.

- Data taking in 2017 has been successful. Calibration is ongoing. Good quality of data. Comparison to simulation has started.

- Now, prototype is continuously extended and more tests are coming!
Additional material
Hanging file design for flexible insertion of absorbers and modules on cooling plates.
Purpose of a good timing resolution:
Use precision timing of EM shower for pileup energy removal.

- Reduction of impact of pileup.

Timing test with 300 μm HGC layer with fast readout:

Results with 32 GeV e⁻ test beam:

- Precision around 16ps.
- Scaling with S/N.

Energies up to 250 GeV at CERN last November:

- Analysis ongoing.
- Expect better resolution with higher S/N, usage of multiple cells.
A machine learning based energy reconstruction

- Explore full content of features in the data in terms of energy reconstruction with a convolutional neural network (CNN).

Training on simulated data with 1-300 GeV electrons.
Evaluation on simulated and real test beam energy binned electron samples.

- Implementation in Tensorflow v1.0.1
- Minimisation of \(\chi^2 \) cost function

2016 CE-E Prototype Energy Resolution

Simulation

- CNN with best resolution
- Benchmark reconstruction
- CNN based reconstruction

TB 2016

- CNN performance not recovered in data.
One module test in May 2017

- One module mounted on Cu cooling plate and mounted on plexiglas support.
 - Two scintillators as triggers.
 - 8 X_0 upstream Pb absorber.

Electron signals seen in the module on the 1st day.

Contamination with pions this May.

Comprehensive C++ based analysis framework was implemented.
Analysis of one module May 2017 data

- Comprehensive C++ based analysis framework is developed.
- Allows for a variety of studies with the data.

Energy reconstruction:
Low gain becomes non-linear above 50 GeV.
Longitudinal shower size - Data vs. sim.

Definitions:
• ELayer: Sum of reconstructed energies in a given layer.
• Evis: Total sum of reconstructed energies over all cells in the calorimeter.

ELayer/Evis for many layers —> Longitudinal shower profile.

- No obvious disagreement for most layers “out-of-the-box”.
- Discrepancies to simulation, especially for EE-2, are under investigation.

Thorben Quast - 06 Oct 2017