The front-end data conversion and readout electronics for the CMS ECAL upgrade

G. Mazza
INFN sez. di Torino
on behalf of the CMS collaboration
The High Luminosity LHC will provide \(\times 10 \) instantaneous and integrated luminosity w.r.t. LHC.
Barrel numbers:

- $|\eta| < 1.48$
- 36 supermodules, 1700 crystals each
- 2448 readout units made of 5×5 crystals
- 61200 PbWO$_4$ crystals
Legacy system

MGPA : Multi Gain PreAmplifier
ADC : 12 bits, 40 MS/s
FENIX : data concentrator and trigger primitive generation

Gianni Mazza

CHEF 2017 - Lyon, October 4th 2017
Upgrade motivations

- Increase of Level-1 trigger rate (150 kHz → 750 kHz) and trigger latency (6.4 μs → 12.5 μs)
- Provide 1×1 crystal informations for trigger (present is 5×5)
- Cool photodetectors (18 °C → 9 °C) to reduce noise due to radiation damage
- Improved time resolution (~30 ps timing) → CSA replaced by TIA and sampling frequency increased from 40 MS/s to 160 MS/s
 - Improved rejection of signals from direct hadron interaction in the APD (“spikes”)
 - Deal with pile-up increase to up to 200 events

Gianni Mazza

CHEF 2017 - Lyon, October 4th 2017
Proposed scheme

- New TIA-based front-end ASIC (*for better timing performances*) with 50 MHz bandwidth and 2-gains output
- The two TIA outputs are both converted – gain selection based on a time window
- Data compression for bandwidth optimization

Gianni Mazza

Direct connection to the transceiver (LpGBT)
CATIA

- Design by Irfu/SEDI
- Fully analog design
- Technology: CMOS 130 nm
- 1st prototype submitted on October 2016
- Successfully tested during 2Q2017
- Two versions: 2.5 V and 1.2 V only supply

CG with regulated cascode architecture
LiTE-DTU features

- Two 12 bits, 160 MS/s ADCs for input digitization
- Time window based data selection
- Lossless data compression
- LpGBT-compatible, high speed serial output (1×1.28 Gb/s or 4×320 Mb/s)
- I²C control interface
- CMOS 65 nm technology
- SEU-protected control logic
- First prototype submission foreseen for 2Q2018
ADC requirements

- Sampling rate: 160 MS/s
- Resolution: 12 bits @ Nyquist frequency
- SNDR > 63.2 dB
- DNL < 0.9 LSBs, INL < 1.5 LSBs
- Temperature range: -20 °C ÷ 85 °C
- Power consumption < 30 mW
- TID tolerant up to 20 kGy
- SEU tolerant control logic
ADC features

- CMOS 65 nm technology
- 1.2 V single supply
- Differential analogue input
- 12 bits, 160 MS/s
- Time-Interleaved, Successive Approximation architecture
- Built-in foreground calibration
- I²C configuration interface
Data selection

Gain $\times 10$ Gain $\times 1$

Saturated signals

Data from Verilog simulation
160 MS/s sampling rate
TIA approximated transfer function

Gianni Mazza

CHEF 2017 - Lyon, October 4th 2017
Readout architecture - 1

5×5 channels

4×(7/14/28) channels @ 1280/640/320 Mb/s

Gianni Mazza

CHEF 2017 - Lyon, October 4th 2017
- Direct connections between ADC chip and LpGBT e-links - no need of an extra chip for data routing

- ADC rate (2.08 Gb/s) has to match e-link rate (1×1.28 Gb/s or 4×320 Mb/s)
 - data to be reduced by 39% (+ protocol overhead)
 - can be done without data losses (Huffman coding)

- 1-to-1 match between VFE channels and LpGBT e-links
 - e-link will be available in 65 nm

- 4 LpGBT required per FE board (6 LpGBT minimum w/o compression, probably 7 without a data routing chip)
- e-link @ 1.28 Gb/s
 - 25 e-links from 5 VFE → 28 e-links from 4 LpGBT (3 not connected)
 - minimum number of e-links (simpler interconnection)

- e-link @ 320 Mb/s
 - 100 e-links from 5 VFE → 112 e-links from 4 LpGBT (12 not connected)
 - can be transmitted with the 160 MHz master clock (with DDR)
 - can provide some redundancy if ADC samples are interleaved over the 4 links connected to different LpGBTs
 - compression efficiency is decreased
Probability to transfer more than 6 bits < 2.4×10^{-4}

Probability to transfer more than 7 bits < 1.4×10^{-5}

160$\times 10^6$

2157
Data rates

- Total bandwidth without compression: $160 \text{ MS/s} \times 13 \text{ bits} = 2.08 \text{ Gb/s}$
- Probability to have an event with more than 6 bits: $< 2.37 \times 10^{-4}$
- Baseline rate: $160 \text{ MS/s} \times (1-2.37\times 10^{-4}) \times 32 \div 5 = 1.024 \text{ Gb/s}$
- Signal rate: $160 \text{ MS/s} \times 2.37\times 10^{-4} \times 32 \div 2 = 0.61 \text{ Mb/s}$
- Baseline rate close to signal: $160 \text{ MS/s} \times 2.37\times 10^{-4} \times 32 = 1.22 \text{ Mb/s}$
- Protocol overhead (estimated): 50 Mb/s

- **Total bandwidth required per channel**: 1.08 Gb/s
- **Total bandwidth available**: $1.28 \text{ Gb/s} \text{ (distributed over 1,2 or 4 e-links)}$
LiTE-DTU scheme

Diagram showing the LiTE-DTU scheme with ADCs, sample selection, encoding, multiplexer, control unit, and DDR serializers with rates of 320 Mb/s.
Data compression studies

6-bit data format

<table>
<thead>
<tr>
<th>01</th>
<th>6 bit</th>
<th>6 bit</th>
<th>6 bit</th>
<th>6 bit</th>
<th>6 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>sample map</td>
<td>6 bit/000000</td>
<td>6 bit/000000</td>
<td>6 bit/000000</td>
<td>6 bit</td>
</tr>
<tr>
<td>001010</td>
<td>13 bit</td>
<td>13 bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001011</td>
<td>010101010101</td>
<td>13 bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td># samples - 8 bit</td>
<td>CRC -12 bit</td>
<td># frame - 8 bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>0101010101010101010101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7-bit data format

<table>
<thead>
<tr>
<th>0001</th>
<th>7 bit</th>
<th>7 bit</th>
<th>7 bit</th>
<th>7 bit</th>
<th>7 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>sample map</td>
<td>7 bit / 0000000</td>
<td>7 bit / 0000000</td>
<td>7 bit / 0000000</td>
<td></td>
</tr>
<tr>
<td>010010</td>
<td>13 bit</td>
<td>13 bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010110</td>
<td>01010101010101</td>
<td>13 bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td># samples - 8 bit</td>
<td>CRC -12 bit</td>
<td># frame - 8 bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>0101010101010101010101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LiTE-DTU Verilog model

Simulation example: 6-bit data format

- 5 MHz average data rate (exponential distr.)
- 64 cells FIFO - Post-synthesis verilog simulation
Model simulations

Noise levels from CATIA 1st prototype measurements (with APD and kapton cables)
Conclusions

- The CMS-ECAL upgrade foresee a redesign of the front-end electronics
 - Two custom development (CATIA and LiTE-DTU) + one common development (LpGBT+Versatile Link+)
 - CATIA main features
 - CMOS 130 nm technology
 - 1st prototype successfully tested in 2017 - 2nd prototype in 2018
 - LiTE-DTU main features:
 - dual 12 bits, 160 MS/s ADC - *IP developed by an external company*
 - data/gain selection, compression and serial transmission
 - radiation tolerant
 - CMOS 65 nm technology
 - 1st prototype in 2018
Backup slides
Scintillation vs spike signal

![Graph showing scintillation and spike signals over time](image-url)
LpGBTX block diagram

http://cern.ch/proj-gbt

2017/07/12 - Update 16
SAR and Time Interleaved ADCs

Differential, successive approximation architecture

Time-interleaved architecture
ADC metrics

- SNDR (or SINAD): Signal to Noise and Distorsion Ratio
- ENOB: Effective Number Of Bits
- SNR: Signal to Noise Ratio
- SFDR: Spurious Free Dynamic Range
- THD: Total Harmonic Distortion

\[
\text{ENOB} = \frac{\text{SNDR} - 1.76}{6.02}
\]

\[
\text{SNR} = \frac{\text{Digitized Signal Power}}{\text{Noise}}
\]

\[
\text{SINAD} = \frac{\text{Digitized Signal Power}}{\text{Noise + Harmonic Power}}
\]

\[
\text{THD} = \frac{\text{Digitized Signal Power}}{\text{Harmonic Power}}
\]

\[
\text{SINAD} = -20 \log \left(\frac{\sqrt{\frac{\text{BW}}{100}} \left(1 + \frac{\text{DNL}}{2^y}\right)}{2^y} + \left(\frac{2 \pi \frac{T_J}{10^2}}{2^y}\right)^2 + \left(\frac{2 \cdot \sqrt{2} \cdot \frac{V_n}{2^y}}{2^y}\right)^2 + \left(\frac{\text{THD}}{100}\right)^2 \right)
\]

Quantization noise, Clock Jitter noise, Analog noise, THD