The Phase-2 Electronics Upgrade of the ATLAS Liquid Argon Calorimeter System

Brigitte Vachon McGill University

On behalf of the ATLAS Liquid Argon Calorimeter group

Calorimetry for the High Energy Frontier 2-6 October 2017

High Luminosity LHC

Challenging environment

- Instantaneous luminosity up to 7.5 x 10³⁴ cm⁻²s⁻¹
 - Approximately 200 inelastic pp collisions per bunch crossing every 25 ns.
- Expected integrated luminosity of 4000 fb⁻¹ over a period of approximately 12 years.
- Major upgrades to the ATLAS detector required.
 - Presenting today the upgrade to the ATLAS LAr calorimeter readout electronics

ATLAS Liquid Argon Calorimeters

Current readout electronics

Brigitte Vachon, McGill

CHEF 2017

Upgrade of LAr readout

- LAr calorimeters expected to continue to operate reliably during HL-LHC data taking period.
- Upgrade of the electronics readout necessary to meet physics goals at HL-LHC.
 - Current LAr electronics readout incompatible with planned upgrade of the Trigger/ DAQ system.
 - Current system limited to 2.5 µs L1 trigger latency and 100 kHz readout.
 - New system must be compatible with 10/35 µs latency for L0/L1 trigger at maximum readout rate of 4 MHz/0.8 MHz.
 - Expected luminosity at HL-LHC imposes radiation tolerance requirements on all frontend components beyond qualification for operation of the existing electronics.
 - ▶ By 2026, ~20 years old electronics would not survive another ~10 years of HL-LHC operation.
 - ► ASIC radiation tolerance requirements: TID = 1.24 kGy, NIEL = 3.4 x 10¹³ n_{eq}/cm² , SEE = 4.6 x 10¹² h/cm²
 - Maintenance/replacement of electronic components > 20 years old would be difficult.
- Front-end on-detector as well as back-end off-detector electronics to be replaced.

Requirements

Dynamic range: Driven by physics needs.

- Low energy: Driven by calibration (MIP signals) and precision measurements needs .
- High energy: Search for high mass particles.
- Need ability to measure cell energy in the range ~ [50 MeV, 3 TeV].
 - ▶ Requires ~ 16-bit dynamic range.
 - Sets requirement on maximum input current pre-amplifiers need to cope with.

• Linearity: Energy scale set using Z or J/ψ events.

- Need per-mille level for up to ~ 10% of dynamic range (up to ~ 300 GeV).
- Linearity at few % level adequate at higher energies.

• Noise: Sum of electronics + pile-up noise.

- Pile-up noise dominates at high luminosity;
- However, aim to keep electronics noise smaller than MIP signal for calibration purposes and possible low μ physics.
- Optimize analog shaper characteristics to minimize total noise after digital filtering.
 Baseline: Bipolar, CR-(RC)² shaping, 13 ns peaking time (programmable)

New readout architecture

CHEF 2017

New readout architecture

FEB2

- Provide input line termination, amplification, shaping, digitization and data transmission to back-end electronics.
- Design based on current FEB.
- Analog/digital separation.
- 1524 FEB2 boards, each handling 128 channels.
- Key ASICs:
 - Preamplifier + shaper
 - ADC
 - Serializer

LAr Signal Processor

- Processing of digitized waveform
 - Receive digitized waveform
 - Apply digital filter to calculate time and energy while suppressing noise.
 - Buffer data until trigger decision.
- Based on FPGA technology and modern communication architecture.
- Provide input to L0(L1) hardware trigger.

Analog processing

- Integrate pre-amplifier and shaper into one ASIC.
- Two R&D projects ongoing.
 - 130 nm CMOS (TSMC)
 - Line terminating preamp with dual range output and electronically cooled resistor.
 - Test chip (pre-amp only) received in 2016 undergoing tests. Next submission will include shaper.
 - 65 nm CMOS (TSMC)
 - ▶ Fully differential amplifier with passive feedback.
 - Pre-prototype chip received in July includes preamp+shaper, programmable termination, 2 gains, programmable peaking time.
- Common test system has been designed and produced to evaluate both options.
 - Choose architecture and technology by end of 2017.

CHEF 2017

Preamp/shaper (130 nm)

- Linearity better than 0.5% up to 7 mA (25 Ω, low gain) [Current comparable to max expected from 5 TeV Z' → ee]
- Input impedance of a few ohms can be tuned easily by C_2 capacitor.
- ENI measured to be about 300 nA.
 - A factor of two larger than expected. Larger noise due to additional resistance in input transistor.
 New transistor designed, tests in November

Preamp/shaper (65 nm)

- First tests encouraging.
- Linearity better than 0.2% up to ~9.7 mA (25 Ω , low gain)
- Gain increases when peaking time increases.

Digitization scheme

- Digitize waveform at 40 MHz.
- Baseline design is to use a 14-bit, radiation hard ADC.
- Cover full 16-bit dynamic range using two-gain system where each ADC digitizes only part of the range and both outputs are sent to the back-end electronics.
- Quantization noise must remain lower than intrinsic LAr resolution in order not to degrade the total resolution by more than 5%.
- Arrange gain switching such that photons from H→γγ have their cell energy fall in the same gain as electrons from Z decays, used to set energy scale.

ADC

- Requirements:
 - 14-bit dynamic range, rad hard, low power (< 100 mW / channel at 40 MSPS), INL/DNL < 1 LSB.
- Three options being explored:
 - Custom ADC design in 65 nm CMOS.
 - Design that can be fully customized for LAr needs.
 - ADC design based on a commercial IP block.
 - Intermediate approach: Use critical block with proven analog performance and customize digital interface as needed.

- COTS ADC chip.

- Most expensive solution, and requires additional development to integrate into the FEB2 architecture.
- Market survey found a promising candidate: Texas Instruments ADS5294, octal 14-bit ADC, fabricated in 180 nm process, consuming 60 mW per channel at 40 MSPS

Custom ADC

- Dynamic Range Enhancer followed by 12-bit SAR.
 - DRE block similar to 4x amplifier. It determines most significant two bits of the 14-bit digital code.
 - Two-stage SAR architecture providing 12-bit.
- ADC test chips received in August and currently being tested.

Dynamic Range Enhancer (DRE)

Data transmission

- ADC data needs to be serialized and transmitted from ondetector front-end boards (FEB2) to off-detector back-end boards (LASP boards).
- 14-bit ADC output formatted into a 16-bit word and serialized at a bit rate of 640 Mbps.
- Total data rate per FEB2 of 163.84 Gbps.
 - 128 channels x 2 gains x 640 Mbps
- Use CERN-based lpGBT chips (8.96 Gbps user data bandwidth) and Versatile Link+ optical assemblies.
 - 65 nm CMOS (TSMC), lower power and higher bandwidth than GBT chip.

LAr Signal Processor system

- Full data stream of detector signals available in LASP modules.
- LASP module functionalities:
 - Receive digitized waveforms
 - Perform gain selection
 - Apply digital filtering and calculate energy/time of LAr signal pulses.
 - Buffer data until trigger decision
 - Transmit relevant data to trigger and DAQ systems.

LAr Signal Processor system

- Baseline hardware implementation is based on full-size ATCA format.
- LASP Processing Unit equipped with high-performance FPGA, electro-optical receiver/ transceiver arrays operating at different link speed, and additional memory and clock distribution devices.
- Choice of FPGA premature, however some FPGA models on the market already fulfill LASP resource requirements.
- Each LASP Processing Unit will receive data from 2 to 4 FEB2 boards.
 - 1 LASP Processing Unit = 512 readout channels (4 FEB2)

Summary

- Readout electronics for ATLAS LAr calorimeter needs to be replaced for HL-LHC.
- New readout architecture based on free-running scheme where all data are sent off-detector to digital back-end system.
- Status and ongoing developments of critical components presented.
- The project is progressing well.
 - Technical design report submitted to LHCC at the end of September 2017.

New readout architecture

Custom ADC

 $LSB = V_{fs}/2^N = 0.5/2^{12} = 0.12 \text{ mV} = LSB_{ideal 14b}$

 $LSB = V_{fs}/2^{N} = 2.0/2^{12} = 0.49 \text{ mV} = LSB_{ideal \ 12b}$

T. Andeen