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High Luminosity LHC

Challenging environment 
• Instantaneous luminosity up to 7.5 x 1034 cm-2s-1 

- Approximately 200 inelastic pp collisions per bunch crossing every 25 ns. 

• Expected integrated luminosity of 4000 fb-1 over a period of approximately 12 years. 

• Major upgrades to the ATLAS detector required. 
- Presenting today the upgrade to the ATLAS LAr calorimeter readout electronics
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ATLAS Liquid Argon Calorimeters
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• Fine-grained sampling calorimeter 
- EM:   LAr-lead 
- HEC: LAr-copper 
- FCal: LAr-copper and LAr-tungsten 

• Granularity 
- dη x dΦ = 0.003 x 0.1 in EM first layer 
- dη x dΦ = 0.025 x 0.025 in EM second layer (shower max) 

• 182,468 channels
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Current readout electronics
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Front-end electronics 
On detector

Back-end electronics 
Off detector
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Upgrade of LAr readout
• LAr calorimeters expected to continue to operate reliably during HL-

LHC data taking period. 

• Upgrade of the electronics readout necessary to meet physics goals at 
HL-LHC. 
- Current LAr electronics readout incompatible with planned upgrade of the Trigger/

DAQ system. 
‣ Current system limited to 2.5 μs L1 trigger latency and 100 kHz readout. 

‣ New system must be compatible with 10/35 μs latency for L0/L1 trigger at maximum readout rate of 4 MHz/0.8 
MHz. 

- Expected luminosity at HL-LHC imposes radiation tolerance requirements on all front-
end components beyond qualification for operation of the existing electronics. 
‣ By 2026, ~20 years old electronics would not survive another ~10 years of HL-LHC operation. 

‣ ASIC radiation tolerance requirements: TID = 1.24 kGy, NIEL = 3.4 x 1013 neq/cm2 , SEE = 4.6 x 1012 h/cm2 

- Maintenance/replacement of electronic components > 20 years old would be difficult. 

• Front-end on-detector as well as back-end off-detector electronics to be 
replaced.
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Requirements

• Dynamic range:  Driven by physics needs. 
- Low energy: Driven by calibration (MIP signals) and precision measurements needs . 
- High energy: Search for high mass particles. 
-  Need ability to measure cell energy in the range ~ [50 MeV, 3 TeV]. 

‣ Requires ~ 16-bit dynamic range. 
‣ Sets requirement on maximum input current pre-amplifiers need to cope with. 

• Linearity: Energy scale set using Z or J/ѱ events. 
- Need per-mille level for up to ~ 10% of dynamic range (up to ~ 300 GeV). 
- Linearity at few % level adequate at higher energies. 

• Noise: Sum of electronics + pile-up noise. 
- Pile-up noise dominates at high luminosity; 
- However, aim to keep electronics noise smaller than MIP signal for calibration 

purposes and possible low μ physics. 
- Optimize analog shaper characteristics to minimize total noise after digital filtering.  

Baseline: Bipolar, CR-(RC)2 shaping, 13 ns peaking time (programmable)
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New readout architecture
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New readout architecture
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FEB2 
• Provide input line termination, amplification, shaping, 

digitization and data transmission to back-end 
electronics. 

• Design based on current FEB. 
• Analog/digital separation. 
• 1524 FEB2 boards, each                                           

handling 128 channels. 
• Key ASICs: 

- Preamplifier + shaper 
- ADC 
- Serializer

LAr Signal Processor 
• Processing of digitized waveform 

- Receive digitized waveform 
- Apply digital filter to calculate time and 

energy while suppressing noise. 
- Buffer data until trigger decision. 

• Based on FPGA technology and modern 
communication architecture. 

• Provide input to L0(L1) hardware trigger.
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Analog processing
• Integrate pre-amplifier and shaper into one ASIC. 

• Two R&D projects ongoing. 

- 130 nm CMOS (TSMC) 

‣ Line terminating preamp with dual range output and 
electronically cooled resistor. 

‣ Test chip (pre-amp only) received in 2016 undergoing 
tests. Next submission will include shaper. 

- 65 nm CMOS (TSMC) 

‣ Fully differential amplifier with passive feedback. 

‣ Pre-prototype chip received in July includes 
preamp+shaper, programmable termination, 2 gains, 
programmable peaking time. 

• Common test system has been designed and 
produced to evaluate both options. 

- Choose architecture and technology by end of 2017.
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Fully‐Differential Amplifier with Passive Feedback
RR

‐ vo
vi = ‐vo/N +

+ ‐ ‐vo
inRii

‐vo/N
C

• R‐noise  4kT/R C∙(N‐1)

• Input impedance  +R/(N+1)
positivepositive

7
• Fully‐differential output
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Preamp/shaper (130 nm)
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• Linearity better than 0.5% up to 7 mA (25 Ω, low gain) [Current comparable to max 
expected from 5 TeV Z’ → ee]  

• Input impedance of a few ohms can be tuned easily by C2 capacitor. 

• ENI measured to be about 300 nA. 
- A factor of two larger than expected. Larger noise due to additional resistance in input transistor. 

New transistor designed, tests in November
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Preamp/shaper (65 nm)
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• First tests encouraging. 

• Linearity better than 0.2% up to ~9.7 mA (25 Ω, low gain)  

• Gain increases when peaking time increases.
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Digitization scheme
• Digitize waveform at 40 MHz. 

• Baseline design is to use a 14-bit, radiation hard ADC. 

• Cover full 16-bit dynamic range using two-gain system where each ADC digitizes only 
part of the range and both outputs are sent to the back-end electronics. 

• Quantization noise must remain lower than intrinsic LAr resolution in order not to 
degrade the total resolution by more than 5%.
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• Arrange gain switching such that 
photons from H→γγ have their cell 
energy fall in the same gain as 
electrons from Z decays, used to set 
energy scale.
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ADC

• Requirements:  
- 14-bit dynamic range, rad hard, low power (< 100 mW / channel at 40 MSPS),     

INL/DNL < 1 LSB. 

• Three options being explored: 
- Custom ADC design in 65 nm CMOS. 

‣ Design that can be fully customized for LAr needs. 

- ADC design based on a commercial IP block. 
‣ Intermediate approach: Use critical block with proven analog performance and customize digital 

interface as needed. 

- COTS ADC chip. 
‣ Most expensive solution, and requires additional development to integrate into the FEB2 

architecture. 

‣ Market survey found a promising candidate:  Texas Instruments ADS5294, octal 14-bit ADC, 
fabricated in 180 nm process, consuming 60 mW per channel at 40 MSPS
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Custom ADC
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• Dynamic Range Enhancer followed by 12-bit SAR. 

- DRE block similar to 4x amplifier.  It determines most significant two bits of the 14-bit digital code. 

- Two-stage SAR architecture providing 12-bit. 

• ADC test chips received in August and currently being tested.

Dynamic Range Enhancer (DRE)
Pipeline SAR
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Data transmission

• ADC data needs to be serialized and transmitted from on-
detector front-end boards (FEB2) to off-detector back-end 
boards (LASP boards). 

• 14-bit ADC output formatted into a 16-bit word and 
serialized at a bit rate of 640 Mbps. 

• Total data rate per FEB2 of 163.84 Gbps. 
- 128 channels x 2 gains x 640 Mbps 

• Use CERN-based lpGBT chips (8.96 Gbps user data 
bandwidth) and Versatile Link+ optical assemblies. 
- 65 nm CMOS (TSMC), lower power and higher bandwidth than GBT chip.
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LAr Signal Processor system
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• Full data stream of detector signals available in LASP modules. 

• LASP module functionalities: 
- Receive digitized waveforms 
- Perform gain selection 
- Apply digital filtering and calculate energy/time of LAr signal pulses. 
- Buffer data until trigger decision 
- Transmit relevant data to trigger and DAQ systems.
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LAr Signal Processor system
• Baseline hardware implementation is based on full-size ATCA format. 

• LASP Processing Unit equipped with high-performance FPGA, electro-optical receiver/
transceiver arrays operating at different link speed, and additional memory and clock 
distribution devices. 

• Choice of FPGA premature, however some FPGA models on the market already fulfill 
LASP resource requirements.  

• Each LASP Processing Unit will receive data from 2 to 4 FEB2 boards. 

- 1 LASP Processing Unit = 512 readout channels (4 FEB2)
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Summary

• Readout electronics for ATLAS LAr calorimeter needs 
to be replaced for HL-LHC. 

• New readout architecture based on free-running 
scheme where all data are sent off-detector to digital 
back-end system. 

• Status and ongoing developments of critical 
components presented. 

• The project is progressing well. 
- Technical design report submitted to LHCC at the end of September 2017.
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New readout architecture
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Custom ADC
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Small signal (0 - 0.5 V)
LSB = Vfs/2N = 0.5/212 = 0.12 mV = LSBideal 14b

Larger signal (0.5 - 2 V)
LSB = Vfs/2N = 2.0/212 = 0.49 mV = LSBideal 12b

T. Andeen


