

The CMS Level-1 Trigger for LHC Run II

Alex Tapper for the CMS collaboration

Imperial College London

Calorimetry for the High Energy Frontier

Lyon, France 2-6 October 2017

- System overview
- ‣ Upgraded processors and high-speed optical links
- ‣ Trigger algorithms and implementation
- ‣ Commissioning and performance with collision data
- ‣ Summary and outlook

Focus on calorimeter trigger, muons in backup

- **‣ System overview**
- ‣ Upgraded processors and high-speed optical links
- ‣ Trigger algorithms and implementation
- ‣ Commissioning and performance with collision data
- ‣ Summary and outlook

Focus on calorimeter trigger, muons in backup

The CMS Level-1 trigger

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 4

- The CMS trigger system consists of two levels, **Level-1 (L1)** and **High Level Trigger (HLT)**, designed to
	- ‣ select events of *potential physics interest*
	- ‣ achieve a **105** rate reduction with no dead time

- LHC Run II: increased luminosity and higher PU
- ‣ Higher trigger rates but CMS detector electronics limited to L1 trigger rate of 100 kHz
- ‣ Upgrade necessary to maintain sensitivity to electroweak scale physics and for TeV scale searches as in Run I

• L1 trigger upgraded in 2016

System overview

- Key concepts
- ‣ Calorimeter system remove boundaries by streaming data from single event into one FPGA
- ‣ Muon system use redundancy of three muon detector systems early to make a high resolution muon trigger
- Global trigger expandable to many more possible conditions and more sophisticated quantities, to give a richer menu á la Higher Level Trigger
- Replaced EVERYTHING!
	-
- CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 5

• All hardware, all software, databases... even the timing control system and DAQ interface...

System implementation

• Organised in two layers, implementing a **time-multiplexed** architecture

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 6

- Key technology changes
	- ‣ μTCA Standard (modern telecoms)
	- ‣ FPGAs: Xilinx Virtex® 7 XC7V690T
	- ‣ High Speed serial optical links: 10 Gb/s
	- Large optical patch panels: custom made commercial solution (Molex Flexplane™)

- System overview
- **‣ Upgraded processors and high-speed optical links**
- ‣ Trigger algorithms and implementation
- ‣ Commissioning and performance with collision data
- ‣ Summary and outlook

Focus on calorimeter trigger, muons in backup

Optical input links

HCAL: 504 ⨉ **6.4 Gb/s links** $HF: 72 \times 6.4$ GB/s links

ECAL: 576 ⨉ **4.8 Gb/s links**

Optical Synchronisation Link Board CERN VTTx to commercial SFP

micro Hcal Trigger and Readout boards (µHTRs)

Processors

ZYNQ SoC FPGA Dual ARM Cortex-A9 CPU + Linux. Communication & support functions

Optical links

Avago MicroPod

Pluggable CXP

- Aggregates & time-multiplexes calorimeter data
- DAQ readout for monitoring

CTP7 Calorimeter Trigger Processor Layer 1 - Pre-processing

MP7 Master Processor Layer 2 - Trigger Algorithms

- Hosts most of the algorithms
- DAQ readout for monitoring

Layer 2

1 Vadatech VT894 Crate, 10 MP7 boards

Time multiplexing routed through 72 to 72 12-fibre MPO connectors

Flexplane (commercial)

Global Trigger receives 12 electron/photon + 12 Tau iso/non-iso candidates + 12 Jets and sums.

Molex Enclosure

720⨉**10Gb/s**

links

- System overview
- ‣ Upgraded processors and high-speed optical links
- **‣ Trigger algorithms and implementation**
- ‣ Commissioning and performance with collision data
- ‣ Summary and outlook

Focus on calorimeter trigger, muons in backup

e/γ finder algorithm

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 12

- ‣ Optimised clustering to recover energy loss due to tracker material
- ‣ Cluster shape used to remove pile-up induced candidate

Dynamic clustering

Improved energy containment Showering electrons, photon conversions Minimise effect of pile-up Improved energy resolution

Cluster shape veto

Discriminate using cluster shape and EM energy fraction between e/γ and jets — 99.5% efficiency for e/γ

Calibration

 $\vert e / v \vert$ cluster energy calibrated as fn. of E_T , η and cluster shape

Energy weighted position

Potential use in correlating objects e.g. invariant mass

Tau finder algorithm

- Based on e/γ clusters
- ‣ Optimise reconstruction of multiple-prong object spread

‣ Dedicated τ trigger

Clustering, shape and position

Very similar to e/γ — optimised for τ Cluster shape veto — under study

Very similar to e/y — optimised for τ including merging as input — also two working points

Merging

Merge neighbouring clusters $(-15\% \text{ of clusters})$ Recover multi-prong τ decays

Calibration

Isolation

Tau decay topology

ηxφ

Jet finder algorithm

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 14

‣ Optimised cone size to match offline reconstruction algorithm ‣ Pile-up subtraction technique less sensitive to fluctuations.

Veto mask

-
-

Calibration

9x9 sliding window around seed tower Correct jet energies as a function of jet E_T and η

PUS areas Seed tower

Input granularity

Access to higher granularity inputs than Run I

Sliding window jet algorithm

Search for **seed energy** above threshold

Apply **veto mask** to remove duplicates

Sum 9x9 trigger towers to approximate R=0.4 used offline

Pile-up subtraction

Consider **four areas** around jet window

Subtract sum of energy in lowest three from jet energy

Missing transverse energy et al.

Access to higher granularity inputs than Run I Tower-level non-uniformity calibration

- Scalar and vector sums of tower E_T (and also jets)
- MET (MHT) vector sum of towers (jets)
- E_T (H_T) scalar sum of towers (jets)
- CORDIC algorithm used to convert x and y components to magnitude and angle

Energy sums algorithms

Pile-up mitigation

Tower zero-suppression fn. of PU and η as in lepton isolation

Calibration

Option to calibrate x and y components — under study

14 (η) x 18 (φ) 56 (η) x 72 (φ)

ηxφ 0.087x0.087

- System overview
- ‣ Upgraded processors and high-speed optical links
- ‣ Trigger algorithms and implementation
- **‣ Commissioning and performance with collision data**
- ‣ Summary and outlook

Focus on calorimeter trigger, muons in backup

Commissioning

Examples of tests with 2016 collision data

- Steps to completion
	- 2012-2014 interconnection tests √
	- 2015 MC pattern test campaign √
	- 2015 data taken in CMS global running √
		- Over 7 billion events in pp
	- 2016 cosmic runs and beam splashes√
	- 2016 first collisions √
	- 2016 Started physics run √
	- 2017 Optimised for high luminosity √

Data vs emulation

- Commissioned in parallel
	- ‣ Calorimeter inputs duplicated in FPGAs (ECAL) and optically (HCAL)
	- ‣ Run parasitically with CMS data taking (not triggering!)

Trigger efficiency for a single τ **with** $E_T > 26$ **, 30 and 34 GeV vs offline** τ p_T Using tag and probe method on a dataset of Z—→μτ events

Performance results: e/γ and τ

Efficiency for a single e/ γ **with** $E_T > 38$ **GeV vs offline** E_T Using tag&probe method on Z— \rightarrow ee dataset

Performance results: Jet and energy sums

Match Level-1 Trigger jets to offline (anti-kt R = 0.4) jets using **ΔR < 0.25 in single muon data**

E_T^{miss} : Vector sum of trigger towers with PU dependent zero**suppression**

Efficiency as a function of offline Missing ET

Compare energies and calculate efficiencies as a function of offline jet quantities

Sharp efficiency turn-on with well calibrated E_T scale

PU mitigation gives lower rate (factor 2) at fixed efficiency, allowing lower thresholds

L1 Jet Finder

Missing Energy Triggers

High level example: invariant mass

- Higher resolution objects both E_T and position feed into..
- ‣ **Global trigger** allows large range of operations:
	- Simple thresholds, P_T and η for example, as in Run I
	- Combinations of objects, like correlations between positions and energies, even handling overlapping objects
- ‣ Example VBF Higgs to di-tau decays:

- **• Two low ET jets, separated by large η gap**
- **Central high p_T τ-lepton pair from Higgs decay**

Combination of leptonic and hadronic selections adds ~**60% efficiency** for the Higgs signal

Di-τ selection with |η| < 2.1 & PT > 32 GeV

Di-jet selection with jet ET > 35 GeV & mjj > 620 GeV

Single jet E_T > 110 GeV

Use of invariant mass allowed the jet threshold to be kept low

- System overview
- ‣ Upgraded processors and high-speed optical links
- ‣ Trigger algorithms and implementation
- ‣ Commissioning and performance with collision data
- **‣ Summary and outlook**

Focus on calorimeter trigger, muons in backup

Summary and outlook

- The CMS L1 trigger has successfully completed first years of operation in Run II ‣ LHC Run II challenging environment, higher luminosity, centre-of-mass energy, increased PU ‣ Excellent performance on single physics objects and sophisticated global quantities • Development, installation and commissioning completed on a very tight schedule
	-
	-
- with parallel running
	- ‣ State-of-the-art, FPGA based, very high bandwidth processors with sophisticated, programmable algorithms
	- ‣ The system has successfully evolved with the changing LHC conditions.
- Exploit detector upgrades in shutdown in 2019-20
	- ‣ Improved HCAL information: longitudinal energy profile, improved timing information…
- Study the performance of this new trigger and learn from design and commissioning to begin designing Phase II trigger upgrade for HL-LHC

References

Run I performance paper: CMS Collab., The CMS trigger system, JINST 12 (2017) P01020.

- ‣ CMS Level-1 Trigger TDR: https://cds.cern.ch/record/706847
-
- Phase 1 upgrade TDR: https://cds.cern.ch/record/1556311
- ‣ Performance notes for EPS 2017 and other conferences
	- e/γ: https://cds.cern.ch/record/2273270
	- τ and VBF with inv. mass: https://cds.cern.ch/record/2273268
	- Jets and sums: https://cds.cern.ch/record/2286149
	- μ: https://cds.cern.ch/record/2286327

LHC: Future plans

CMS

• Peak luminosity $6.0E + 34$ **] s-1 Run 1 Run 2 Run 3 Instantaneous luminosity [cm-2 Cm** $5.0E + 34$ **<PU> <PU> <PU> 20-40 40 60** Viisonimu $4.0E + 34$ **300 fb-1 25 fb-1** \bigcap $\overline{}$ $3.0E + 34$ taneous $2.0E + 34$ **Design** Instant $1.0E + 34$ **Phase 1 upgrades** $0.0E + 00$

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 25

- Year
-

Note that fractions are inclusive \rightarrow no attempt **to correct for overlaps between different types of trigger**

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 26

‣ Bandwidth allocated per trigger object type

L1 menu for 10³⁴ cm⁻² s⁻¹

Backup: system

- Interesting processes many orders of magnitude low cross sections than total pp cross section
- Select interesting events without dead time
- Implemented as a two level system in CMS \rightarrow

Challenges

- Trigger rates are driven up in Run II by the increase in luminosity, the centre-of-mass energy, and by the higher PU (especially hadronic objects)
- CMS detector electronics are limited to a L1 trigger rate of 100 kHz
- ‣ Maintain sensitivity for electroweak scale physics and for TeV scale searches as in Run I

- Key technology changes
	- $VME \rightarrow \mu TCA$ (modern telecoms standard)
	- System wide use of latest FPGAs \rightarrow Xilinx Virtex® 7
	- Parallel copper links \rightarrow serial optical links
	- Link speeds 1 Gb/s \rightarrow 10 Gb/s
	- Large optical patch panels \rightarrow custom made commercial solution (Molex Flexplane™)
	- ‣ Online software rewritten → more common code, modern libraries, more easily maintained
- Aim for flexible, maintainable system
	- ‣ Adapt to evolving CMS physics programme
- CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 29

CM

Time-multiplexed calorimeter trigger

Algorithms - Layer 1

• Tower Level operations

- ‣ **Calibration and Vetos** (H/E : ratio of the HCAL and ECAL energies, used in to discriminate electromagnetic and hadronic objects)
- ‣ **Mixed Link Speed MGT operations 4.8** and **6.4 Gb/s synchronous** and **10 Gb/s asynchronous**

Algorithms - Layer 2

• Time-multiplexed processing

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 33

- ‣ **Calorimeter data** received in **geometric order** (increasing η) in **one FPGA**
- ‣ **Fully pipelined algorithms**: local processing, reduce signal fanout, eliminate register duplication and routing delays minimised.

240 MHz algorithm clock

Compact, maintainable firmware

P rebuilt several times since the start of operations

Layer-2 algorithms structure

Backup: resolutions etc.

e/γ reconstruction performance

 CN

τ reconstruction performance

τ reconstruction performance

Jet algorithm performance

PUS areas

Jet reconstruction performance

Jet trigger performance results

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 40

Match Level-1 Trigger jets to offline (anti-k_t R = 0.4) jets using ΔR < 0.25 in single muon data

-
- ‣ Compare energies and calculate efficiencies as a function of offline jet quantities

- Sharp efficiency turn-on with well calibrated E_T scale
- Insensitive to pile-up

MET reconstruction performance

Energy sum trigger performance results

- data
- \triangleright Vector sum of trigger towers with $|\eta| < 3$ to form E_T ^{miss}

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 42

Use jets to calculate scalar sum $H_T = \Sigma E_{Ti}$ for $E_{Ti} > 30$ GeV and $|\eta| < 3$ using single muon

Backup: muon trigger

Muon track finder algorithms

- Muon track finding
	- Segment into Barrel, Overlap, and Endcap regional processors
		- Complementary detector strengths e.g. RPC timing
		- Improve robustness in the case of dead channels/ chambers and cracks
	- Pattern based track finding in endcap and overlap (with separate MVA LUT p_T assignment in endcap) ‣ Road search extrapolation track finding in barrel
	-
	- Global muon trigger takes muon tracks from regional finders, sorts by p_T and quality and cancels duplicates
	- ‣ Input from calorimeter trigger to apply isolation to muon candidates

 $BMTF \vert n \vert < 0.83$ OMTF 0.83 < |η| < 1.24 EMTF $|n| > 1.24$

Muon trigger performance results

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 45

- Trigger efficiency for a single muon with $p_T > 25$ GeV vs offline muon p_T and p_T
- Using tag and probe method on a dataset of $Z \rightarrow \mu\mu$ events

Muon trigger performance results

- Trigger efficiency for a single muon with $p_T > 125$ GeV vs offline muon p_T
- Using tag and probe method on a dataset of $Z \rightarrow \mu\mu$ events