

The CMS Level-1 Trigger for LHC Run II

Calorimetry for the **High Energy Frontier**

Lyon, France 2-6 October 2017

Alex Tapper for the CMS collaboration

Imperial College London

- System overview
- Upgraded processors and high-speed optical links
- Trigger algorithms and implementation
- Commissioning and performance with collision data
- Summary and outlook

Focus on calorimeter trigger, muons in backup

- **System overview**
- Upgraded processors and high-speed optical links
- Trigger algorithms and implementation
- Commissioning and performance with collision data
- Summary and outlook

Focus on calorimeter trigger, muons in backup

The CMS Level-1 trigger

- The CMS trigger system consists of two levels, Level-1 (L1) and High Level Trigger (HLT), designed to
 - select events of *potential physics interest*
 - achieve a 10⁵ rate reduction with no dead time

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

• L1 trigger upgraded in 2016

- LHC Run II: increased luminosity and higher PU
- Higher trigger rates but CMS detector electronics limited to L1 trigger rate of 100 kHz
- Upgrade necessary to maintain sensitivity to electroweak scale physics and for TeV scale searches as in Run I

System overview

- Key concepts
- Calorimeter system remove boundaries by streaming data from single event into one FPGA
- Muon system use redundancy of three muon detector systems early to make a high resolution muon trigger
- Global trigger expandable to many more possible conditions and more sophisticated quantities, to give a richer menu á la Higher Level Trigger
- **Replaced EVERYTHING!**
- CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 5

All hardware, all software, databases... even the timing control system and DAQ interface...

System implementation

CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France. 6

 Organised in two layers, implementing a time-multiplexed architecture

- Key technology changes
 - µTCA Standard (modern telecoms)
 - FPGAs: Xilinx Virtex[®] 7 XC7V690T
 - High Speed serial optical links: 10 Gb/s
 - Large optical patch panels: custom made commercial solution (Molex Flexplane[™])

- System overview
- **Upgraded processors and high-speed optical links**
- Trigger algorithms and implementation
- Commissioning and performance with collision data
- Summary and outlook

Focus on calorimeter trigger, muons in backup

Optical input links

ECAL: 576×4.8 Gb/s links

HCAL: 504×6.4 Gb/s links HF: 72×6.4 GB/s links

Optical Synchronisation Link Board **CERN VTTx to commercial SFP**

micro Hcal Trigger and Readout boards (µHTRs)

Processors

CTP7 Calorimeter Trigger Processor Layer 1 - Pre-processing

- Aggregates & time-multiplexes calorimeter data
- DAQ readout for monitoring

Optical links 40Rx/36 Tx 10 Gb/s Avago MicroPod Pluggable CXP

> **ZYNQ SoC** FPGA Dual ARM Cortex-A9 CPU + Linux. Communication & support functions

MP7 Master Processor Layer 2 - Trigger Algorithms

- Hosts most of the algorithms
- DAQ readout for monitoring

720×10Gb/s

links

Time multiplexing routed through 72 to 72 12-fibre **MPO connectors**

Layer 2

1 Vadatech VT894 Crate, 10 MP7 boards

Global Trigger receives 12 electron/photon + 12 Tau iso/non-iso candidates + 12 Jets and sums.

Molex Enclosure

Flexplane (commercial)

- System overview
- Upgraded processors and high-speed optical links
- **Trigger algorithms and implementation**
- Commissioning and performance with collision data
- Summary and outlook

Focus on calorimeter trigger, muons in backup

e/y finder algorithm

12 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

- Optimised clustering to recover energy loss due to tracl material
- Cluster shape used to remove pile-up induced candida

Dynamic clustering

Improved energy containment Showering electrons, photon conversions Minimise effect of pile-up Improved energy resolution

Cluster shape veto

Discriminate using cluster shape and EM energy fraction between e/γ and jets — 99.5% efficiency for e/γ

Calibration

 e/γ cluster energy calibrated as fn. of E_T , η and cluster shape

Energy weighted position

Potential use in correlating objects e.g. invariant mass

ker	
ate	

Tau finder algorithm

ηχφ

Tau decay topology

Dedicated T trigger

- Based on e/γ clusters
- Optimise reconstruction of multiple-prong object spread

Clustering, shape and position

Very similar to e/γ — optimised for τ Cluster shape veto — under study

Merging

Merge neighbouring clusters ($\sim 15\%$ of clusters) Recover multi-prong τ decays

Calibration

τ cluster energy calibrated as fn. of E_T , η, merging and EM fraction

Isolation

Very similar to e/γ — optimised for τ including merging as input — also two working points

Jet finder algorithm

Seed tower

PUS areas

Veto mas

Calibration

9x9 sliding window around seed tower

14 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

Optimised cone size to match offline reconstruction algorithm Pile-up subtraction technique less sensitive to fluctuations.

Input granularity

Access to higher granularity inputs than Run I

Sliding window jet algorithm

Search for seed energy above threshold

- Apply **veto mask** to remove duplicates
- **Sum 9x9 trigger towers to** approximate R=0.4 used offline

Pile-up subtraction

Consider four areas around jet window

Subtract sum of energy in lowest three from jet energy

Correct jet energies as a function of jet E_T and η

Missing transverse energy et al.

14 (η) x 18 (φ)

56 (η) x 72 (φ)

ηχφ 0.087x0.087

15 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

Access to higher granularity inputs than Run I Tower-level non-uniformity calibration

Energy sums algorithms

- Scalar and vector sums of tower E_T (and also jets)
- MET (MHT) vector sum of towers (jets)
- E_T (H_T) scalar sum of towers (jets)
- CORDIC algorithm used to convert x and y components to magnitude and angle

Pile-up mitigation

Tower zero-suppression fn. of PU and η as in lepton isolation

Calibration

Option to calibrate x and y components — under study

- System overview
- Upgraded processors and high-speed optical links
- Trigger algorithms and implementation
- **Commissioning and performance with collision data**
- Summary and outlook

Focus on calorimeter trigger, muons in backup

Commissioning

- Commissioned in parallel
 - Calorimeter inputs duplicated in FPGAs (ECAL) and optically (HCAL)
 - Run parasitically with CMS data taking (not triggering!)

Examples of tests with 2016 collision data

Data vs emulation

- Steps to completion
 - 2012-2014 interconnection tests
 </
 - 2015 MC pattern test campaign
 </
 - 2015 data taken in CMS global running \checkmark
 - Over 7 billion events in pp
 - 2016 cosmic runs and beam splashes
 - 2016 first collisions \checkmark
 - 2016 Started physics run
 </
 - 2017 Optimised for high luminosity
 </

Performance results: e/y and t

Efficiency for a single e/γ with $E_T > 38$ GeV vs offline E_T Using tag&probe method on $Z \rightarrow ee$ dataset

18 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

L1 Tau Lepton Finder

Using tag and probe method on a dataset of $Z \rightarrow \mu \tau$ events

Performance results: Jet and energy sums

L1 Jet Finder

Missing Energy Triggers

19 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

Match Level-1 Trigger jets to offline (anti-kt R = 0.4) jets using $\Delta R < 0.25$ in single muon data

Compare energies and calculate efficiencies as a function of offline jet quantities

Sharp efficiency turn-on with well calibrated E_T scale

E^{miss} : Vector sum of trigger towers with PU dependent zerosuppression

Efficiency as a function of offline Missing E_T

PU mitigation gives lower rate (factor 2) at fixed efficiency, allowing lower thresholds

High level example: invariant mass

- Higher resolution objects both E_T and position feed into...
- **Global trigger** allows large range of operations:
 - Simple thresholds, P_T and η for example, as in Run I
 - Combinations of objects, like correlations between positions and energies, even handling overlapping objects
- Example VBF Higgs to di-tau decays:

- **Two low E_T jets, separated by large η gap**
- **Central high pT T-lepton pair from Higgs decay**

Di-jet selection with jet E_T > 35 GeV & m_{ii} > 620 GeV

Single jet $E_T > 110 \text{ GeV}$

Di-T selection with $|\eta| < 2.1$ & P_T > 32 GeV

Use of invariant mass allowed the jet threshold to be kept low

Combination of leptonic and hadronic selections adds ~60% efficiency for the Higgs signal

- System overview
- Upgraded processors and high-speed optical links
- Trigger algorithms and implementation
- Commissioning and performance with collision data
- **Summary and outlook**

Focus on calorimeter trigger, muons in backup

Summary and outlook

- The CMS L1 trigger has successfully completed first years of operation in Run II LHC Run II challenging environment, higher luminosity, centre-of-mass energy, increased PU Excellent performance on single physics objects and sophisticated global quantities Development, installation and commissioning completed on a very tight schedule
- with parallel running
 - State-of-the-art, FPGA based, very high bandwidth processors with sophisticated, programmable algorithms
 - The system has successfully evolved with the changing LHC conditions.
- Exploit detector upgrades in shutdown in 2019-20
 - Improved HCAL information: longitudinal energy profile, improved timing information...
- Study the performance of this new trigger and learn from design and commissioning to begin designing Phase II trigger upgrade for HL-LHC

References

- CMS Level-1 Trigger TDR: <u>https://cds.cern.ch/record/706847</u>
- Phase 1 upgrade TDR: <u>https://cds.cern.ch/record/1556311</u>
- Performance notes for EPS 2017 and other conferences
 - e/γ: <u>https://cds.cern.ch/record/2273270</u>
 - τ and VBF with inv. mass: <u>https://cds.cern.ch/record/2273268</u>
 - Jets and sums: <u>https://cds.cern.ch/record/2286149</u>
 - µ: <u>https://cds.cern.ch/record/2286327</u>

23 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

Run I performance paper: CMS Collab., The CMS trigger system, JINST 12 (2017) P01020.

Backup

LHC: Future plans

CMS

Peak luminosity -2S-1] 6.0E+34 Run 2 Run 1 Run 3 C U U 5.0E+34 <PU> <PU> <**PU**> 20-40 40 60 uminosity 4.0E+34 **300 fb**⁻¹ **25 fb**⁻¹ 0 $\overline{}$ 3.0E+34 Instantaneous 2.0E+34 Design 1.0E+34 Phase 1 upgrades 0.0E+00

- Year

L1 menu for 10³⁴ cm⁻² s⁻¹

26 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

Bandwidth allocated per trigger object type

Note that fractions are inclusive \rightarrow no attempt to correct for overlaps between different types of trigger

Backup: system

Challenges

- Trigger rates are driven up in Run II by the increase in luminosity, the centre-of-mass energy, and by the higher PU (especially hadronic objects)
- CMS detector electronics are limited to a L1 trigger rate of 100 kHz
- Maintain sensitivity for electroweak scale physics and for TeV scale searches as in Run I

- *Interesting* processes many orders of magnitude low cross sections than total pp cross section
- Select interesting events without dead time
- Implemented as a two level system in CMS \rightarrow

- Key technology changes
 - VME $\rightarrow \mu$ TCA (modern telecoms standard)
 - System wide use of latest FPGAs \rightarrow Xilinx Virtex[®] 7
 - Parallel copper links \rightarrow serial optical links
 - Link speeds 1 Gb/s \rightarrow 10 Gb/s
 - Large optical patch panels \rightarrow custom made commercial solution (Molex Flexplane[™])
 - Online software rewritten \rightarrow more common code, modern libraries, more easily maintained
- Aim for flexible, maintainable system
 - Adapt to evolving CMS physics programme
- 29 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

Time-multiplexed

lime-multiplexed calorimeter trigger

CM

Algorithms - Layer 1

• Tower Level operations

- **Calibration and Vetos** (H/E : ratio of the HCAL and ECAL energies, used in to discriminate electromagnetic and hadronic objects)
- **Mixed Link Speed MGT operations** 4.8 and 6.4 Gb/s synchronous and 10 Gb/s asynchronous

Layer-2 algorithms structure

240 MHz algorithm clock

Compact, maintainable firmware

rebuilt several times since the start of operations

33 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

Time-multiplexed processing

- Calorimeter data received in geometric order (increasing η) in **one FPGA**
- Fully pipelined algorithms: local processing, reduce signal fanout, eliminate register duplication and routing delays minimised.

Backup: resolutions etc.

e/γ reconstruction performance

Treconstruction performance

CN

t reconstruction performance

Jet algorithm performance

PUS areas

Jet reconstruction performance

Jet trigger performance results

- Compare energies and calculate efficiencies as a function of offline jet quantities

- Sharp efficiency turn-on with well calibrated E_T scale
- Insensitive to pile-up

40 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

Match Level-1 Trigger jets to offline (anti- $k_t R = 0.4$) jets using $\Delta R < 0.25$ in single muon data

MET reconstruction performance

Energy sum trigger performance results

- data
- Vector sum of trigger towers with $|\eta| < 3$ to form E_T^{miss}

42 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

Use jets to calculate scalar sum $H_T = \Sigma E_{T_i}$ for $E_{T_i} > 30$ GeV and $|\eta| < 3$ using single muon

Backup: muon trigger

Muon track finder algorithms

- Muon track finding
 - Segment into Barrel, Overlap, and Endcap regional processors
 - Complementary detector strengths e.g. RPC timing
 - Improve robustness in the case of dead channels/ chambers and cracks
 - Pattern based track finding in endcap and overlap (with separate MVA LUT p_T assignment in endcap) Road search extrapolation track finding in barrel

 - Global muon trigger takes muon tracks from regional finders, sorts by p_T and quality and cancels duplicates
 - Input from calorimeter trigger to apply isolation to muon candidates

BMTF |n| < 0.83 OMTF 0.83 < $|\eta| < 1.24$ **EMTF** $|\eta| > 1.24$

Muon trigger performance results

- Trigger efficiency for a single muon with $p_T > 25$ GeV vs offline muon p_T and η
- Using tag and probe method on a dataset of $Z \rightarrow \mu\mu$ events

45 CHEF2017: Calorimetry for the High Energy Frontier 2017, 2-6 October 2017, Lyon, France.

 $p_T > 25$ GeV vs offline muon p_T and η at of Z— $\to \mu\mu$ events

Muon trigger performance results

- Trigger efficiency for a single muon with $p_T > 125$ GeV vs offline muon p_T
- Using tag and probe method on a dataset of $Z \rightarrow \mu\mu$ events