

EM calorimeter

EBU photo front/back view

CHEF2017-calice-EBU

granularity

Fine segmentation requirements for calorimeter

PFA-ECAL

- ➤ requirements to incorporate PFA
- ☆ fine granularity ~ 5mmx5mm (2D)
- as well as longitudinal segmentation +1D=3D)

segmentaion	ECAL	HCAL	EJet resolution	
LHC	5cm	20cm	60% /√E	
	10 ⁵ ch.	10 ⁵ ch.	6% @100GeV	
ILC	0.5cm	3cm	30% /√E	
	10⁸ ch.	10 ⁷ ch.	3 % @100GeV	

calorimeter desig

- ECAL for photon separation
- smaller Moliere radius : lateral tungsten
 shower containment : X0
- ECAL consists of tungsten absorber and thinner sensitive material (silicon/scintillator)

absorber	X0 (cm)	р (g/ cm ³)	R _M (cm)	total X0=25X0 (cm)	λ _I (cm)
tungsten	0.35	19.9	~ 1	9	9.94

ILD ECAL

- ∾ Large Detector for PFA
- RECAL ~1.8m =R tracker
- \sim ECAL~5x5mm²~ 10⁸ch.
- Front End read out Electronics in each layers
- together with sensitive layer in between absorber(2mm)

Solvers in 20cm including FE elex.

scintillator strip ECAL

7

5mm

absorber

- Scintillator strip 5x45x2^tmm³ reduce number of R/O ch.
- with a very small photo-senso
- with orthogonal arrangement
- to achieve 5x5mm²
- front end electronics (EBU) embedded
- good timing resolution
- robust and low cost

Ecal Base Unit =EBU minimum R/O unit of sc-ECAL

- 18cmx18cm with 144 scstrips
- FE electronics : 4SPIROCs ASIC + IF
- amp,shaper,digit
 self-trigger
 bias voltage cont

144 strips on a FEEB

18 ci

18 cm

photo-sensormer Immx1mm

>small & low power consumption sensor : MPPC Hamamatsu

>counts number of pixels as output

photo 10um 15um

>dynamic range must be large for EM shower

>increase # of pixel

keeping the size, smaller pixel

>10/15um pitch are available

dynamic range °ā 200 **Maximum energy :Bhabha ਵ**1000 800

max energy/strip ~<800 MIPs

MPPC-output is limited with # of pixels Comparison of RC_scaled

800x7=5600 pix : 10kpi ***is non-line good enough, 15um sufficient 10000 pixel on-linear device (Scintillation)

SCSN38

7p.e.

600

400

200

Kuraray-scsn38:rect

CAMAC Ape Source [/0.25pC]

scintillator material

- >Light yield of different producers are examined
- to optimize to sc-strip ECAL
- SCSN38 : Kuraray
- EJ204 : ELJEN

LY (EJ) ~ LY(SCSN) *1.4

sensor coupling

another light readout

- >double sided read out
- >reduce noise of MPPCs
- >by taking coincidence
- >with position resolution
 >LY sum is twice

EBU with 25um

>tested at DEDY electrons

>with 25um pitch on an EBU large signal

>successful

>blue indicates "good" separation of mip from ped.

EBU with 10um

>current SPIROC2b is optimized for 25um pitch MPPC

>with 10um pitch, encount difficulty small signal

>signal is too small

>SPIROC is tuned to have max. amp and ...

>ADC dist. for beta rays

>increasing gain as well as noises, separation is difficult
16

ADCData {100<ADCData&&ADCData<600&&ChipID==195&&ChannelNumber==33

EBU with 15um

>15um pitch MPPC larger than 10um >higher gain and PDE

>bench test for comparison®

>one channel test with EBU

>possible operation of

15um pitch with EBU

>further tests

further EBU test

>EM shower test will be performed at ELPH-Tohoku university

>100-800MeV electrons >in preparation for 2017

EBU with 10um pitch MPPC was tested

Terada's talk

18

2016 beam test

summary & outlook

- Strip scintillator ECAL is under development, moving into realistic phase
- EBU: combination of sensors and embedded FE electrics including MPPC is being examined

Second secon

POWER CALIB

齞

DIF

Jet energy resolution in terms of strip length

insensitive to the length

