
Graphics for ROOT 7
Olivier Couet - April 2017

• Introduction
• Graphics Model
• Requirements
• Interactive Editing
• ROOT 6 functionalities we want to keep.. or not

The current ROOT Graphical User Interface (GUI) need to be rethink in the context of ROOT 7 for at least
three main reasons:

1. It is very OS-specific.
• Dead end on MacOs: Mac apps cannot embed ROOT windows
• Dead end on Windows: rely on gdk which is very slow compare to what is now available.

2. Need to reduce the code to be maintained.
3. Remote GUI is required. Base the GUI in a web browser

To fulfil these requirements, moving to a web based GUI is the solution.

These changes in the GUI imply that ROOT 7 Graphics must be “on the web” also.

==> As ROOT 7 is already breaking some backward compatibilities with ROOT 6, graphics for ROOT 7 is not
tied to any specific model. Therefore we are free to base it on modern web based visualisation
techniques.

==> In the past we very reluctant to base graphics on external tools (like Qt) not being sure of their lifetime.
These days "Web Graphics” is supported by a very large community. Therefore relying on tools like D3 is
possible.

Introduction

ROOT
Web Browser (remote)

or
Local native window

(libChromium)

C++ Side JavaScript side

ClientServer

The basic ideas for future ROOT 7 graphics:

• ROOT 7 is running as usual and generates the graphics display list by running user macro or plotting
objects. This is the “server side” or "C++ side".

• Instead of being rendered by the usual C++ painters, the graphics display list is sent to a client which
can be remote (Web Browser) or local (for instance a TCanvas based on libChromium). Each object in
the display list has a painter on the client side.

==> This Client Side is written in JavaScript and does the rendering thanks to systems like D3 for SVG
rendering or three.js for WebGL rendering.

The following figure summarise the model:

Graphics model

Visualisation

• This model allows to be independent from any local graphics backend (X11 or Cocoa) as the final
rendering is done via standards like SVG (Scalable Vector Graphics) and/or WebGL.

• It allows to have remote display for free as graphics can be rendered in web browser thanks to the http
protocol.

• For local display the JavaScript rendering might be performed in a local canvas via libraries like
libChromium.

==> A prototype of a such system already exists. It was started by Bertrand Bellenot and Sergey Linev.
It is called “JSROOT”.

The initial goal of JSROOT was to read objects (histogram, graphs, canvas etc …) in ROOT files and display
them in a web browser using JavaScript.

This first approach is now working and allows to browse objects in ROOT files. It is also used by the
SWAN project. Once displayed the objects can be manipulated in the web browser (zoomed, scaled, etc…).

Graphics model

General requirements

 • Multi-display (multiple view of multiple objects) support.

 • The same object can be displayed in multiple pads, or even multiple times in the same pad.

 • Keep the two sides in sync:
 • Transfer of objects to the browser, to allow client state.
 • The server send delta of what has changed. Delta is on object level ("pad"), not on property level.
 • A communication package is needed for context menus as well as even handling / reaction (e.g.

TGraph::AddPoint at mouse click position).

 • We need to allow dedicated I/O for the graphics representation; default ROOT I/O might be the
default (see slide on “graphics output files")..

Requirements

Object identifier (ObjectID)

Objects are identified thanks to a unique ObjectID known on the client and server side to be sure any
object changes on one side can be properly reflected on the other.

 • Per pad, which can be inside a pad which is inside a canvas.
 • Canvas will have global unique canvas ID
 • ObjectID is unique counter, kept in each pad, assigned at drawable creation. (To find an object in a pad with a given ID we’ll have to do a linear

search). 

Requirements

Canvas versus browser
 • Locally, Create a new TCanvas by creating a native window embedding a Chromium’s canvas. We

need also to run in batch mode (libChromium should help also).
Remotely, display a URL that people can click to spawn a remote browser.

 • By default, new canvas will open new tab / browser window

 • A canvas needs to be embeddable (like TRootEmbeddedCanvas)

Graphics output on files

Two main kind graphics output images are required:

 1. Vector graphics output like PDF, PostScript, SVG and Latex. In ROOT 6 vector graphics formats are
implemented by native ROOT classes not relying on any external libraries. They are the exact clone of
what is visible on screen.

 2. Bitmap output like png, gif (also animated gif), jpeg tiff etc .. In ROOT 6 the bitmap outputs are
implemented thanks to the libAfterImage (ImageMagick can also be consider to replace it) library which
has been included in the ROOT distribution.

This kind of output represent a large fraction of the graphics produced by ROOT. Usually ROOT runs in
batch mode without any graphics displayed on screen. Massive productions of images can be launched
as bitmap or vectors graphics images.

SVG output: unlike PDF or PS, produces only one image per file (like for the bitmap output). It can be used
to include high quality zoomable plots in web pages.

Latex output: it consist of PGF/TikZ vector graphics output which is the format required to include
graphics in LaTeX documents to have exactly the same look and feel as the rest of the LaTeX document.

Some solutions need to be found in the ROOT 7 context:

• The client side generates SVG graphics.
• Some converter are needed to other formats like PDF.
• The rendering of Math formulae, done with MathJax seems fine with PDF output; if needed we can use

MathJax4SVG
• Batch mode PNG output is assumed to be fine... 

Requirements

2D vs 3D
• 2D is rendered as SVG.
• 3D scenes produced by Eve are rendered using WebGL.

==> That’s two different systems. Question: Can we use only 3D, even for 2D ? may be yes (we do it now in ROOT 6 with
the OpenGL backend).

three.js allows to generate SVG; the problem is that it is relatively slow and cannot be used for interactive rendering (lack of
basic support for SVG in three.js interactive tools).

For now , assume both 2D and 3D canvases are needed.

Requirements

Coordinates systems

Coordinate systems are :

1. Normalized Coordinates (% of canvas size). It allows to position an object or define the size of a text in
% of the canvas. This is a convenient way for user to place objects independently of the user
coordinates. 

2. A Canvas has its size in Pixels Coordinates (on the client), possibly different for each view; can have
initial server provided size, but in the end the size is defined by each client independently. 

3. User Coordinates (currently provided by TFrame), can have multiple, each defining their own coordinate
system and mapping to normalized device coordinates, log scales; use by drawing “into” them. 

4. Normalized Device Coordinates: This system keeps the aspect ratio of primitives when the canvas
aspect ratio changes. Typically it allows an arrow head to alway be a triangle. This coordinate system
is mainly for internal use.

Requirements

py

px00

ymax

xmaxymin
xmin

1

10 0

min(1, px/max(px ,py))00

min(1, py/max(px ,py))

① ③②

④

==> Objects can be placed in any
coordinates system.

==> In a coordinate system an
object has fixed coordinates.

Object selection
• Selection is "powerpoint" like. Objects can be selected using a lasso or a multiple selection with mouse

click while the CTRL key is pressed.

• Selected objects can then be grouped, copy/pasted etc …The interactive part of this operation occurs on
the client side.

Interactive Editing

Object insertion
• With mouse clicks; equivalent of the ROOT 6 "tool bar".

• This operation occurs on the client side.

• Once an object is fully created it is sent back to the server side.

Grouping
Objects can be grouped.

• The grouped objects are removed from the original pad and moved into a new overlay pad.
• The initial pad will contain the new pad.
• The relative position of the contained objects stays fixed.

Objects can only be grouped with objects in the same coordinate system.

Interactive Editing

Copy/Cut & Paste

On the client side object or group of objects can be cut/copied and pasted.

Once the operation is completed, the new created object are sent back to the server.

If an object is cut or deleted it is also reflected to the server side.

Usual shortcuts should be available CTRL-C, CTRL-X and CTRL-V.

Object ordering (occlusion)

Objects are stored on the server side in a display list.

In 2D they are displayed "in order”. Therefore the first object in the list will be displayed first and will be in the
background of the resulting image (this is only valid in 2D of course).

As the last drawn object may hide the previously drawn objects, a push/pop mechanism should be provided to
interactively reorder objects and pads.

In 3D objects' positions are fully defined in the 3D space.

Interactive Editing

Undo
Actions coming from interactive clients should be undoable. Changes coming from C++ side not
necessarily

The C++ side should take care of pushing undo actions, based on events it gets (e.g. “SetTitle” should push
the previous title).

TExec

In ROOT 6, TExec is a utility class that can be used to execute C++ code when the canvas display list is traversed (or
the list of functions of an histogram). By itself this class is a “No-Op” class until the C++ code attached to it is defined by
the user program.

A TExec object, "exec", will be placed in the list of pad primitives as soon as the command exec.Draw() is
performed.

When the pad is rendered ("painted" in the ROOT jargon), the TExec::Paint function is called. This function will
execute the specified C++ code attached to TExec.

In the new system it should reacts on pad::update(). The TExec’s code should be run on the C++ side  

ROOT 6 functionalities we want to keep .. or not

What we might lose ?
PDF/TikZ vector graphics output (for LaTeX output, class TTeXDump), can we use inkscape's SVG
=> PDF + Latex? (this is not completely equivalent as this approach generates two files)

