Status of Low Energy Neutron Transport

Harphool Kumawat Nuclear Physics Division, BARC

Outline

Status of ENDF Processing
\square ENDF processing tests and Model tests
Results
Work to do

Endf Processing (offline)

- Reconstruction of resonance cross-section
- Linearization of cross-section with tolerance (0.1% or as required but same in all energy range)
- Doppler broadening at higher temperature
- Unionization of energy grids
- Create total ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H},{ }^{3} \mathrm{H},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$ production crosssection from various ground and excited states.
- Create total gas production cross-section from all charge particle production reactions i.e. $(n, p)+(n, 2 p)$
- $+(\mathrm{n}, 2 \mathrm{np}),(\mathrm{n}, \mathrm{p} \alpha)$.

Endf Processing (offline)

- All angular distributions that are given in terms of Legendre polynomials are converted to probability tables with tolerance of 0.5%

$$
f(\mu, E)=\frac{2 \pi}{\sigma_{s}(E)} \sigma(\mu, E)=\sum_{l=0}^{\mathrm{NL}} \frac{2 l+1}{2} a_{l}(E) P_{l}(\mu)
$$

- All angular distributions that are given in terms of probability tables are converted to linear probability tables with tolerance of 0.5%

Endf Processing (offline)

- All energy distributions that are given in terms of 56 formulations are converted to linear probability tables with tolerance of 0.5\%

$$
f\left(E \rightarrow E^{\prime}\right)=\frac{e^{-E^{\prime} / a}}{I} \sinh \left(\sqrt{b E^{\prime}}\right)
$$

I is the normalization constant:

$$
\begin{aligned}
I & =\frac{1}{2} \sqrt{\frac{\pi a^{3} b}{4}} \exp \left(\frac{a b}{4}\right)\left[\operatorname{erf}\left(\sqrt{\frac{E-U}{a}}-\sqrt{\frac{a b}{4}}\right)+\operatorname{erf}\left(\sqrt{\frac{E-U}{a}}+\sqrt{\frac{a b}{4}}\right)\right] \\
& -a \exp \left[-\left(\frac{E-U}{a}\right)\right] \sinh \sqrt{b(E-U)}
\end{aligned}
$$

$$
\begin{aligned}
f\left(E \rightarrow E^{\prime}\right) & =\frac{1}{2}\left[g\left(E^{\prime}, E_{F}(L)\right)+g\left(E^{\prime}, E_{F}(H)\right)\right] \\
g\left(E^{\prime}, E_{F}\right) & =\frac{1}{3 \sqrt{\left(E_{F} T_{M}\right)}}\left[u_{2}^{3 / 2} \mathrm{E}_{1}\left(u_{2}\right)-u_{1}^{3 / 2} \mathrm{E}_{1}\left(u_{1}\right)+\gamma\left(\frac{3}{2}, u_{2}\right)-\gamma\left(\frac{3}{2}, u_{1}\right)\right] \\
u_{1} & =\left(\sqrt{E^{\prime}}-\sqrt{E_{F}}\right)^{2} / T_{M} \\
u_{2} & =\left(\sqrt{E^{\prime}}+\sqrt{E_{F}}\right)^{2} / T_{M}
\end{aligned}
$$

Status of ENDF processing

- All calculation are limited to pre-processing stage which is offline. We just build CDF during initilization of simulation.
- Preprocessed ENDF/B-VIII. 0 (556 isotopes), root files are generated to use in simulation.
- Processed few JENDL-4.0 JEF-3.2, EAF-2010, ROSFOND-2010 files without any issue but need to check for all isotopes.
- Photon emission data is processed.
- 4 processes and models (Elastic, capture, fission and inelastic) are used to couple within hadronic processes.
- Library processing and retrieving executables are written in nudy, sub-directory EndfToRoot. Data are in written tree for plotting.
- TestNudy0 is written to physics/tests to test models and integrals

Comparison of cross-section with PREPRO

H. Kumawat, Geant Simulation Meeting

Comparison of cross-section with PREPRO

H. Kumawat, Geant Simulation Meeting

Comparison of cross-section with PREPRO

H. Kumawat, Geant Simulation Meeting

Comparison of cross-section with PREPRO

H. Kumawat, Geant Simulation Meeting

Comparison of cross-section with PREPRO

n-092_U_235_300 Cross-section

Cross-Sections Ratio

H. Kumawat, Geant Simulation Meeting

Comparison of cross-section with PREPRO

H. Kumawat, Geant Simulation Meeting

Comparison of cross-section with PREPRO

H. Kumawat, Geant Simulation Meeting

Comparison of cross-section with PREPRO

H. Kumawat, Geant Simulation Meeting

Elastic Angular Distributions

Angular Distribution

Angular Distribution

Fission Neutron Angular Distributions
 Angular Distribution

Angular Distribution

Energy Distributions

Energy Distribution

Energy Distribution

H. Kumawat, Geant Simulation Meeting

Inelastic Angular Distributions

Angular Distribution

Fission Neutron Multiplicity

Fission neutrons

Fission neutrons

Fission neutrons

Work to Do

- Process the library for charge particles using same tools
- Create similar test as in Geant4 and test performance
- Process co-variance data and add error bar to simulated data along with statistical error.
- Generate root independent version and implement in Geant4

धनखवाद

Thank you for your attention!

