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GANSs for calorimeter simulation
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O Infroduction
O Generative Adversarial Networks
O 3dGAN: the LCD high granularity calorimeter

O Summary & Plans



Intfroduction

O Started a fastsim R&D activity

O We wantto have a generic interface capable of using different fastsim options
including ML based

O Submitted a proposal for an IPPC including the development of such tools, including
test of different ML techniques

O Started working on Generative Adversarial Networks



ML for (calorimeter) simulation

Generative models (Generatirve Stochastic Netowrks, Variational Auto-Econders,
Generative Adversarial Networks, ..) can be used for simulation

O Readlistic generation of samples
O Use complicated probability distributions, optimise multiple output for a single input
O Work well with missing data

Can 3D imaging approaches be useful?
Can we keep accuracy while doing things fastere

Can we sustain the increase in detector complexity (future highly-granular
calorimeters are more demanding)?

What are the resources are needed?




Generative Adversarial Networks

O Simultaneously train two models:

O G(z) captures the data distribution

O D(x) estimates the probability that a sample came from the
training data rather than G

noise ]
O Training procedure for G(z) is to maximize the probability of D(x) generator
making a mistake
(data sample]—{discriminator}—t gig;rsltgr }

Goodfellow et al. 2014
Conditional GAN, arXiv: 1411.1744
Deep Convolutional GAN, arXiv:1511.06434

Auxiliary Classifier GAN, arXiv:1610.0958 [ yes/no ’

data
sample?




Generative Adversarial Networks

[ z~p(2) ]

Generator

Discriminator

[ X ~ q(x) ]—{ D(x) ]——[x~p(x|z)}

X~q(x)?

. 1/0 |

minmax V(D, G) = Egp.(a)[l0g D(x)] + E,np, (2)[log(1 — D(G(2)))]

G D



Generative Adversarial Networks
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D is only a partially accurate classifier.

D is frained to discriminate samples from data
After updating G, gradient of D has guided G(z) to regions more likely to be classified as data.

G and D don't improve because pg = pdata. D is unable to differentiate.
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Training GANSs Is a many steps process:

O Sample noise and generate images with G

O Sample images from training dataset and

train the D to recognize G data from real
data

O Train combined G + D to tell you that G
data it is real

O At this stage D weights are frozen.

O Back feed info to discriminator and repeat
for as many epochs as needed
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Conditional GAN

O GAN framework can be extended to learn a
parameterized generator pogel(X | Y)

D is tfrained on (X, y) pairs, G gets (z, y) as inputs

Useful to obtain a single generator object for all y
configurations 00000
O Can be used to interpolate between distributions . 00000 00000 -
NG /

arXiv:1411.1784v

mén max V(D,G) = Egrppu(@) log D(x)] + E,p, (2 [log(1 — D(G(2)))]

minmax V(D, G) = Egnpy,(x)[log D( Esrop. () [log(1 — D())]



LCD calorimeter

O Using as a benchmark the LCD detector
design

O Accessible beyond the boundaries of
different experiments

O Example of next-generation highly granular
detector

O FullSIM available out of the box

O Simple calorimeter geometry with uniform cell
sizes



LCD calorimeter

O ECAL (1.5 minnerradius, 5 mmx5 mm segmentation)

O 25 tungsten absorber layers + silicon sensors

# of events .
o8 B 8 8 8

O HCAL (3.0 cmx3.0 cm segmentafion)
O 640 steel absorber layers + polystyrene scinftillators A O .' . '

O Defined single-particle benchmark datasets (e*, e, v, _ % - -z ‘ ‘ '..";-: '
O Uniform energy distribution of incomin@bporficles g ' ;f",f."' AT ' :

O Datais essentially a 3D image | Geant4 1 shower in LCD calorimeter

https://github.com/tpmccauley/ispy-hepml 1




3dGAN for calorimeter images

Similar discriminator and generator models

O 3D conv layers with different x,y,z filter sizes
O Particle tag as auxiliary classifier
Implemented tips&tricks found in literature

O Some helpful (ho batch normalisation in the last step, LeakyRelu, no hidden dense
layers, no pooling layers) oricle abel

O Some not (Adam opftimiser) I

Batch training N

Loss is combined cross entropy

https://github.com/soumith/ganhacks




Training process

“Vanilla” GAN

1. Train the discriminator 2. Train the chained GAN
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Preliminary

Some images

O Slice energy spectrum

O Start with photons & electrons in EM . 7 'l
calorimeter . . Ponrt]

O Use parficle tag to condition fraining
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Preliminary

GAN generated electrons
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Preliminary
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Preliminary

Single cells: energy mean and sigma

GAN/G4
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O Cell energy sigmais underestimated by GAN

100 120
CellID

O Set up higher level criteria for image validation (reconstructed variables)

O Check uncertainty due to training sample statistics



Condifioning on energy

O Training the generator Shruti Sharan

and the discriminator

using initial particle [ particle ] X | noise |
energy
energy
o _ . generator
O Initially discrete bins '

to test interpolation
: L generator
and extrapolation [data sample }—{ dlscrlmlnator sample

data
O Then test sample?
continuous
“reco”

spectrum yes/no eneray




Parallel fraining

Gulrukh Khattak
O Study scaling on KNL cluster @CINECA. (IPCC framework)

O Tensorflow does not scale to multinodes (no MPl implementation)

O Migrate code to Intel Caffe

O Our GAN implementation in Caffe is not straightforward (model and
training)

O Intel will release a completely new software stack (Nervana) - much more
flexible

O Parallel test on GPU cluster

O Collaboration with experts from the experiments (A. Farbin - ATLAS and M.
Pierini -CMS)



Conclusion and plans

O First GAN application looks very promising
O Working on understanding and improving performance
O Training sample stafistics
O Adding important features (energy)
O Studying scaling
(m

Try hyper-parameter scan to improve network design (an openlab
summer student will join in July)
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Thank Youl!

Adapted from P. Balaprakash
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