
GeantV interfaces
A.	GHEATA

GEANTV WEEKLY	AUG	8,	2017



Input	configuration:	Messengers?
Input	configuration	is	an	important	user	interface	for	simulation
◦ Allowing	user	to	set	parameters	related	to	any	configurable	
component/category:
◦ Run,	event	generator,	detector	construction,	visualization,	…

Geant4	implementation:	UI	messengers	per	component,	registered	to	UI	
manager
◦ User	starts	UI,	then	issues	“commands”,	which	can	form	a	macro

Evolution	in	GeantV:
◦ version	2:	hard-coded	parameters	in	the	executable
◦ current:	the	same,	but	providing	a	steering	script	where	parameters	can	be	
configured

◦ To	do:	messengers,	something	else?
◦ A	native	configuration	mechanism	needed	besides	the	possibility	to	configure	GeantV using	an	

external	package	(e.g.	DD4HEP)

2

Geant::Component

Geant::
ComponentMessenger

Geant::
UIMessenger

/testem/setAbsMat G4_Au
/testem/det/setAbsThick 9.658	um



Input:	User	generator
User-defined	generator:	adding	events	one-by-one	to	GeantV
◦ Functionality	equivalent	to	G4VPrimaryGenerator
◦ Extra	concept	in	GeantV:	event	slot

◦ no	more	than	nslots events	transported	concurrently

Implementation
◦ version	2:	called	concurrently	after	freeing	an	event	slot
◦ version	3:	called	by	main	thread	at	initialization	and	filling	event	
server	(concurrent	service)
◦ memory	problems	for	many	input	events

◦ To	do:	
◦ maintain	nslots buffer	+	queue	of	pending	events	(fixed	max	size);	activate	queued	

event	in	the	server	once	a	slot	is	released
◦ support	external	event	loop	where	events	are	inserted	externally,	without	invoking	a	

user	generator	(needed	for	CMSSW)

3

Geant::PrimaryGenerator

InitPrimaryGenerator()
GeantEventInfo NextEvent()
GetTrack(int N,	GeantTrack &track)
GetEvent(GeantEvent *event)

HEPMCGenerator

GunGenerator

UserGenerator



Input:	Geometry
Geometry	definition	interface:	detector	construction
◦ Quite	similar	to	Geant4	functionality
◦ Purpose:	whatever	the	input,	end-up	with	VecGeom transient	geometry	
structure,	connect	basketizers to	volumes,	connect	GeantV regions	to	logical	
volumes

Evolution:
◦ version	2:	no	detector	construction	class,	geometry	loaded	from	ROOT	file	
(or	GDML->ROOT),	then	converted	to	VecGeom,	no	regions

◦ current	version:	detector	construction	still	supporting	geometry	construction	
via	ROOT	transient	geometry,	supporting	Regions.	Material	conversion	from	
ROOT	to	GeantV materials	included	as	lambda	in	the	detector	construction

◦ Supporting	geometry	definition	via	external	package	(e.g.	DD4HEP)	possible	
by	emulating	native	detector	construction	(as	for	Geant4)

◦ To	do’s:	?

4

GeantVDetectorConstruction

UserDetector
Construction

CreateMaterials()
CreateGeometry



Input:	physics	configuration
Based	on	physics	list,	same	as	in	Geant4

Configuration	parameters	now	hardcoded	(or	can	be	passed	as	macro	arguments)
◦ Same	as	general	configuration	issue

Mihaly:	investigating	the	possibility	to	work	with	multiple	physics	lists,	not	for	changing	the	
physics	per	region,	but	e.g.	sampling	tables	vs.	rejection,	fast	versus	detailed	algorithms

To	do:	?

5



User	data	registration	in	GeantV
version	2:	User	data	per	step	(“snapshot”	hits)
◦ e.g.	position/momentum	for	some	particles	in	a	
given	detector

◦ generating	possibly	large	amount	of	data,	but	
generally	used	only	for	debugging	purpose

◦ Mechanism	using	ROOT	I/O	and	parallel	merging	
provided
◦ Still	not	disentangling	events

version	3:	“Summable”	hit	information
◦ e.g.	total	energy	deposit	per	event	in	a	calorimeter	
cell
◦ Custom	user	data	organized	per	event	slot	has	to	be	registered	

by	the	user	application,	then	attached	to	task	data
◦ Filled	during	SteppingActions,	the	information	gets	merged	

automatically	per	event,	then	cleared
◦ Inclusive	information	(per	run,	e.g.	total	number	of	tracks	of	a	

given	type)	has	now	to	be	summed-up	manually	in	thread-safe	
manner	

6

TrackManager

NUMA	
block

tracks

NUMA	
block

tracks

NUMA	
block

tracks
…

task	
data
user
data

task	
data
user
data

task	
data
user
data

task	
data
user
data

threads

Merge,	then	
clear	per	event	
info

NUMA	
node



User	data	management
MyApplication::Initialize()
◦ Register	summable user	data	types	(implementing	
functions	Clear()	and	Merge())
◦ TaskDataHandle<UserData>	*handle	=	fRunMgr-

>GetTDManager()->RegisterUserData<UserData>(const char	
*name)

◦ Keep	handles	as	data	members	of	the	user	application

MyApplication::AttachUserData(GeantTaskData
*td)
◦ Called	by	every	task/thread	in	the	initialization	
phase,	must	create	UserData objects	(as	many	as	
needed,	e.g.	per	detector)	and	attach	to	task	data	
objects	(per	event	or	per	run)	via	the	handlers
◦ fDataHandleEvents->AttachUserData(new	UserDataPerEvent,	

td);	
◦ fDataHandleRun->AttachUserData(new	UserDataPerRun,	td)

MyApplication::SteppingActions(GeantTrack*,	
GeantTaskData *td)
◦ Retrieve	user	data	per	event	slot	from	task	data,	
then	score	per	event	slot	information
◦ UserDataPerEvent *myData =	(*fDataHandleEvents)(td)-

>GetDataPerEvent(track->fEvslot);

MyApplication::FinishEvent(GeantEvent *event)
◦ Called	by	a	single	worker/task;	merge	user	data	per	
event	then	clear	it:
◦ fRunManager->GetTDManager()->MergeUserData(event-

>GetSlot(),	*fDataHandlerEvents);

◦ Sum-up	per	run	info	in	a	thread	safe	manner

MyApplication::FinishRun()
◦ Analyze	collected	data

7



Track	data	management
Physics	processes	have	state	data	dependent	on	step,	to	be	attached	to	tracks
◦ Tracks	are	allocated	contiguously	in	blocks

Register	user-defined	class	to	TrackDataMgr singleton
◦ TrackToken *token	=	TrackDataMgr::Instance()->RegisterDataType<ModelData>(“someName”);
◦ In-place	construction	is	recorded	as	lambda

Access	data	run	time
◦ ModelData *	myData =	token->Data<ModelData>(track);

Any	number	of	the	same	data	type	can	be	added
◦ When	clearing	a	track	run-time,	the	in-place	constructors	are	avoided,	we	rather	call	copy	from	a	
cleared	blueprint	track	

The	mechanism	can	be	used	for	any	model	needing	it

8



Run,	primary	&	stepping	interfaces
Very	similar	to	Geant4
◦ Begin/EndRun(),	called	by	main	thread
◦ Begin/EndEvent(),	called	by	a	single	worker	thread	(thread	safe	for	event	data)
◦ Begin/EndPrimary()
◦ SteppingActions(),	coming	with	scalar	and	vector	signatures

The	full	state	can	be	queried	from	the	track.	Currently	no	pre/post	step	information,	so	user	
cannot	query	e.g.	momentum	of	track	before	step
◦ To	be	added

9



Discussion
Missing	features?	Things	to	clean-up.

Changed	due	to	task-based	approach?
◦ Hopefully	not

Interfaces	for	handling	MC	information	– not	yet	discussed

10


