
PRNG reproducibility
in multi-thread & scalar & multi-track (basket) case

Intro: pRNG scalar

State_si
(a0

i, …an
i)

State_si+1
(a0

i+1, …an
i+1)

Kernel

0 < rnd < 1

Uniform Uniform
Array Gaus …

Process1 Process2 Processk

track
daughter1

daughter2

Reproducibility

• Conditions
• Starting the random sequence from the same seed (state)
• Preserving the original track sequencing (e.g. basketized vs. non-basketized)

• A global pRNG state is enough if conditions above fulfilled

• Multi-threading and/or basketization change track sequencing for
calls to pRNG
• Need to make the pRNG state intrinsically coupled with the track state, not

exposing its evolution to sequencing

State_si

(a0
i, …an

i)
becomes

State_si

(a0
i, …an

i)

Vector pRNG state

State_vi

(a_v0
i, …a_vn

i)
State_vi+1

(a_v0
i+1, …a_vn

i+1)

Kernel_v

0_v < rnd_v < 1_v

Uniform
Uniform

Array
Gaus …

a0
i[0] a0

i[1] a0
i[2] a0

i[3]

a_v0
i AVX double (nlanes= 4)

A vector State_v contains
nlanes scalar states

where:

Vectorized multi-track approach (scalar pRNG
states per track)

State_si
(d0

i, …dn
i)

State_si
(c0

i, …cn
i)

State_si
(b0

i, …bn
i)

State_si
(a0

i, …an
i)

aj
i[0]

bj
i[1]

cj
i[2]

dj
i[3]

Kernel_v

State_vScalar

aj
i+1[0]

bj
i+1[1]

cj
i+1[2]

dj
i+1[3]

State_v

State_si
(d0

i+1, …dn
i+1)

State_si
(c0

i+1, …cn
i+1)

State_si
(b0

i+1, …bn
i+1)

State_si
(a0

i+1, …an
i+1)

Scalar

Gather scalar states to individual State_v lanes Scatter lanes into original track scalar states

rnd_v

Kernel_s

rnd_s

Remarks

• Easy way to implement the proxy

• Memory footprint: Ntracks*sizeof(State_s)

• 4*sizeof(State) bytes copied per track
• track state -> proxy memory -> vector register -> proxy memory -> track state

• Rejection has to be called in single track mode
• Values computed in vector mode may be dropped for some lanes otherwise,

compromising reproducibility

• Single track goes scalar

rnd_s

Vectorized caching approach (vector pRNG
states per track)

State_vi

(a_v0
i, …a_vn

i)

rn
d

_
v

0

rn
d

_
v

1

icrt

cache

State_vi+1

(a_v0
i+1, …a_vn

i+1)

rn
d

_
v

0

rn
d

_
v

1

icrt

cache

Kernel_v

rnd_v

Cache 2 vector rnd values per track (4*2 scalar lanes)

Keep track of current delivered value in cache

Gather scalar value from cached lanes into

rnd_s/rnd_v in case: (icrt % 4) > 0

Call vector kernel to advance the state and refill

the cache in case: (icrt % 4) = 0

Non-basketized

Basketized

Remarks

• More complicated implementation of the proxy
• Memory footprint: Ntracks*sizeof(State_v) + 2*sizeof(Double_v)
• 2*sizeof(State) + sizeof(double) bytes copied per track
• track state -> vector register -> track state + 1 rnd cached

• All calls to the kernel done in vector mode
• Run-time benefit in the scalar case

• More complex initialization per track
• Need Nlanes sequences per track instead of one

Discussion

• The 2 approaches cannot be inter-changed during the same run
• There are benefits/overheads in the 2 approaches
• In my opinion we need an implementation for both types of proxies
• Where to implement the proxies?

