
PRNG reproducibility
in multi-thread & scalar & multi-track (basket) case



Intro: pRNG scalar
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Reproducibility

• Conditions
• Starting the random sequence from the same seed (state)
• Preserving the original track sequencing (e.g. basketized vs. non-basketized)

• A global pRNG state is enough if conditions above fulfilled

• Multi-threading and/or basketization change track sequencing for 
calls to pRNG
• Need to make the pRNG state intrinsically coupled with the track state, not

exposing its evolution to sequencing
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Vector pRNG state
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Vectorized multi-track approach (scalar pRNG
states per track)
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Remarks

• Easy way to implement the proxy

• Memory footprint: Ntracks*sizeof(State_s)

• 4*sizeof(State) bytes copied per track
• track state -> proxy memory -> vector register -> proxy memory -> track state

• Rejection has to be called in single track mode
• Values computed in vector mode may be dropped for some lanes otherwise,

compromising reproducibility

• Single track goes scalar



rnd_s

Vectorized caching approach (vector pRNG
states per track)
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Remarks

• More complicated implementation of the proxy
• Memory footprint: Ntracks*sizeof(State_v) + 2*sizeof(Double_v)
• 2*sizeof(State) + sizeof(double) bytes copied per track
• track state -> vector register -> track state + 1 rnd cached

• All calls to the kernel done in vector mode
• Run-time benefit in the scalar case

• More complex initialization per track
• Need Nlanes sequences per track instead of one



Discussion

• The 2 approaches cannot be inter-changed during the same run
• There are benefits/overheads in the 2 approaches
• In my opinion we need an implementation for both types of proxies
• Where to implement the proxies?


