
1

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Towards modularization and
vectorization of Geant4

hadronic physics: a pilot study

J.G.Lima (FNAL), S.Y. Jun (FNAL)
and T. Koi* (SLAC)

July 24 2018

* T.Koi is not active
in this project anymore

2

SLAC-FNAL pilot project on Geant R&D
Explore new computing avenues for hadronic physics simulation in HEP

• Provide standalone, vectorized Bertini algorithms (a specifc hadronic cascade model)

• Modularized components (Geant4 and GeantV)

• Modern hardware technologies and parallel architectures

Project scope

• Modularize Geant4 Bertini cascade model and optimization – T.Koi (SLAC)

• SIMD vectorization of some computing-intensive algorithms – G. Lima (FNAL)

• Integration and computing performance evaluation – S.Y. Jun (FNAL)

• Identify requirements for future extension/development

Co-PIs: D. Elvira (FNAL) and A. Dotti (SLAC)

Hadronic simulation is an important missing component of the GeantV vector prototype,
which explores fne-grain parallelism using a top to bottom vectorization approach for

particle transport simulation for next generation detector simulation.

Bertini cascade was chosen for this project, since it is the preferred model for low energy
hadron-nucleus interactions, also it is relatively fast (compared to Binary cascade or INCL in

Geant4) and it handles a large number of particle types.

3

Implementation details and choices
● Use detailed profling to identify

CPU-heavy algorithms to
demonstrate performance gains
from vectorization

● Redesign data structures to
promote vectorization with
minimal overhead

● Use templated types to write
generic algorithms to be
instantiated using scalar or
vector types as needed

● VecCore package to isolate the
complexities of vectorization
implementation from algorithms

● Benchmark every vectorized class,
for close performance monitoring

● Validate physics simulation results
with respect to Geant4

4

Two illustrative preliminary results
● Unit test for InuclElementaryParticle

● Benchmark for GXLorentzConvertor

5

Some random thoughts
● Algorithm-level basketization seems like a good idea

– e.g. assume uniform input arrays for Bertini cascade: [pp..p] on [Scint, Scint,
Scint]

– part of them will collide with Carbon atoms, others will collide with Hydrogen →
rebasketize

– at next level: rebasketize by physics process
– at another level: based on N-body kinematics

→ algorithm-level basketization functionality
– extra bonus: much better to satisfy requirements of event reproducibility

● Output arrays are not homogeneous
– top level basketization will create homogeneous baskets (ok)
– each particle should keep a “link” to unique “parent ID”, which could be its

direct parent, or last persistent parent

● Challenging issues dealing with VcVector<int> and VcVector<double>
in same algorithms
– some new functionalities may be useful

6

Bertini vectorization status
● Git repository available: https://github.com/gxbert/gxbert.git
● Basic infrastructure for development, unit testing and performance evaluation (v01 done)
● New SoA data structure for tracks and kinematics (v01 done, extensions needed for nuclei)
● Vectorized ThreeVectors (a la CLHEP) and LorentzVectors (done)
● Basic algorithms for Lorentz boosts (Lab frame ↔ projectile ↔ center of mass frame) as

needed (done)
– measured speedup of ~3.4x in avx mode (theo.max = 4) w.r.t. scalar mode
– additional 25% gain (scalar vs. G4), due to less branching and better memory locality

● Integration of our vectorized pRNG (pseudo-Random Number Generator) (done)
● Vectorized versions of base classes which defne interfaces of hadronic Bertini models (under

way for single-hadrons)
● Development and integration of multi-particle (vectorized) interfaces for algorithms (v01

done for single hadrons, extensions needed for nuclei)
● Currently vectorizing algorithm that handles interactions between elementary hadrons.

– A long process, because of the large number of functions involved, some of them are rather difcult to
vectorize due to branching and the triage process, x-section lookup, etc.

– good chance of improvement if homogeneity of input vectors is assumed! (algorithm-level
basketization?)

● Vectorization of particle-nuclei and nuclei-nuclei algorithms (not started yet)
● Assessment of performance gains and perspectives

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

