2% Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Towards modularization and
vectorization of Geant4
hadronic physics: a pilot study

J.G.Lima (FNAL), S.Y. Jun (FNAL)

and T. Koi* (SLAC)

July 24 2018

* T.Koi is not active
in this project anymore__"__]
3¢ Fermilab

SLAC-FNAL pilot project on Geant R&D

Explore new computing avenues for hadronic physics simulation in HEP

Hadronic simulation is an important missing component of the GeantV vector prototype,
which explores fine-grain parallelism using a top to bottom vectorization approach for
particle transport simulation for next generation detector simulation.

Bertini cascade was chosen for this project, since it is the preferred model for low energy
hadron-nucleus interactions, also it is relatively fast (compared to Binary cascade or INCL in
Geant4) and it handles a large number of particle types.

* Provide standalone, vectorized Bertini algorithms (a specific hadronic cascade model)
* Modularized components (Geant4 and GeantV)

* Modern hardware technologies and parallel architectures

Project scope

« Modularize Geant4 Bertini cascade model and optimization — T.Koi (SLAC)

« SIMD vectorization of some computing-intensive algorithms — G. Lima (FNAL)
* Integration and computing performance evaluation — S.Y. Jun (FNAL)

- Identify requirements for future extension/development

Co-Pls: D. Elvira (FNAL) and A. Dotti (SLAC)

2% Fermilab

Implementation details and choices

Profiler/OpeniSpeedshop
GXBERT (shared libs)
CPU profiling reports

» Use detailed profiling to identify
CPU-heavy algorithms to
demonstrate performance gains
from vectorization . PATLE Gall gath counter @35tiz: INCLUSIVE time for funclons.

« LIBS: libraries counter (LIBS)

* Redesign data structures to Energy=1.5GeV Carbon (C) Lead (Pb)
1 1 H gamma FUNCTIONS PATHS LIBS FUNCTIONS PATHS LIBS
Minimal overnea proton FUNCTIC :.'..,“:.: o Ta— ...:_ vt [
. neutron FUNCTIC = iz STTERL
» Use templated types to write Lambda FUNCTIC =
generic algorithms to be | , =

Processor: Intel(R) Xeon(R) CPU E

instantiated using scalar or
vector types as needed

b:l FTFP_BERT _proton_Al_3GeV_ratio.gif

* VecCore package to isolate the o
complexities of vectorization |-
implementation from algorithms

« Benchmark every vectorized class,

for close performance monitoring Lsamm- e s sy e
. . . \ 1 FTFP_BERT proton Al 3GeV = 15de
« Validate physics simulation results :28§2§
with respect to Geant4 L S i - s0ceg
=Ll L Pt ebedefl ol b ELE DI TT YL R = 120deg

. solidlines GXBERT)FMIlab

3 : j) Dot lines G4BERT
Boxes Data

Two Iillustrative preliminary results

e Unit test for InuclElementaryParticle

lima@mac: build ® ./TestInuclElementaryParticle
=== GXInuclElemParticles: Particles=[proton; neutron; gamma; deuteron] masses=[938.272; 939.565; 0; 1875.61] types=<1 2 9 41> ekin=[1073.52, 925.289, 827.232
, 1155.82]
4 tracks: <1 2 9 41>
kinE=[1073.52, 925.289, 827.232, 1155.82]
totE=[1073.52, 925.289, 827.232, 1155.82]
nucleon:m[1100]
pion:m[0000]
photon:m[0010]
baryon:<1 1 0 2>
strange:<@ @ 0 0>
quasi_deutron(): m[0000]
=== GXInuclElemParticles: Particles=[pi+; pi-; diproton; dineutron] masses=[139.57; 139.57; 1876.54; 1879.13] types=<3 5 111 122> ekin=[1073.52, 925.289, 827
.232, 1155.82]
4 tracks: <3 5 111 122>
kinE=[1073.52, 925.289, 827.232, 1155.82]
totE=[1213.09, 1064.86, 2703.78, 3034.95]
nucleon:m[0000]
pion:m[1100]
photon:m[0000]
baryon:<@ @ 2 2>
strange:<@ @ 0 0>
quasi_deutron(): m[0011]
>>> GXInuclElementaryParticle tests passed.

« Benchmark for GXLorentzConvertor

lima@mac: build ® ./LorentzConvertorBenchmark 3.0 1048576 10

GXBert results: sumEscm 1.96957e+09 sumEkin 3.75451e+06 sumP2 9.23118e+11 CPUtime 100.117
Scalar results: sumEscm 1.96957e+09 sumEkin 3.75451e+06 sumP2 9.23118e+11 CPUtime 63.2348
Vector size: 4

Vector results: sumEscm 1.96957e+09 sumEkin 3.75451e+06 sumP2 9.23118e+11 CPUtime 14.7479
VectorL result: sumEscm 1.96957e+09 sumEkin 3.75451e+06 sumP?2 9.23118e+11 CPUtime 14.6649

GXBert results: sumEscm 1.96957e+09 sumEkin = 3.75451e+06 sumP?2 9.23118e+11 CPUtime
double results: sumEscm = 1.96957e+09 sumEkin 75451e+06 sumP2 23118e+11 CPUtime 63.1925
Double_v results: sumEscm = 1.96957e+09 sumEkin 75451e+06 sumP2 23118e+11 CPUtime 14.451

Fermilab

100.376

= 3. 9.
= 3. 9.

Some random thoughts

» Algorithm-level basketization seems like a good idea

- e.g. assume uniform input arrays for Bertini cascade: [pp..p] on [Scint, Scint,
Scint]

- part of them will collide with Carbon atoms, others will collide with Hydrogen -
rebasketize

- at next level: rebasketize by physics process
- at another level: based on N-body kinematics
- algorithm-level basketization functionality
- extra bonus: much better to satisfy requirements of event reproducibility

« Output arrays are not homogeneous

- top level basketization will create homogeneous baskets (ok)

- each particle should keep a “link” to unique “parent ID”, which could be its
direct parent, or last persistent parent

» Challenging issues dealing with VcVector<int> and VcVector<double>
in same algorithms

- some new functionalities may be useful

2= Fermilab

Bertini vectorization status

» Git repository available: https://github.com/gxbert/gxbert.git

Basic infrastructure for development, unit testing and performance evaluation (vO1 done)
New SoA data structure for tracks and kinematics (vO1 done, extensions needed for nuclei)
Vectorized ThreeVectors (a la CLHEP) and LorentzVectors (done)

Basic algorithms for Lorentz boosts (Lab frame e projectile & center of mass frame) as
needed (done)

- measured speedup of ~3.4x in avx mode (theo.max = 4) w.r.t. scalar mode
- additional 25% gain (scalar vs. G4), due to less branching and better memory locality

Integration of our vectorized pRNG (pseudo-Random Number Generator) (done)
» Vectorized versions of base classes which define interfaces of hadronic Bertini models

* Development and integration of multi-particle (vectorized) interfaces for algorithms (vO1
done for single hadrons, extensions needed for nuclei)

» Currently vectorizing algorithm that handles interactions between elementary hadrons.

- A long process, because of the large number of functions involved, some of them are rather difficult to
vectorize due to branching and the triage process, x-section lookup, etc.

- good chance of improvement if homogeneity of input vectors is assumed! (algorithm-level
basketization?)

» Vectorization of particle-nuclei and nuclei-nuclei algorithms (not started yet)
» Assessment of performance gains and perspectives

2= Fermilab

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

