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Introduction

O u tI I n e Introduction to Machine Learning and some info

about its evolution and ecosystem

How and why experiments will need more and
more fast simulations approaches

Different approaches to fast simulation in LHC
experiments

A Generic Fast Simulation

approach
To what extent these approaches can be
generalized?



Al, ML and DL

“The study of the modelling of human mental functions by
computer programs.”—

ARTIFICAL INTELLIGENCE

“Machine learning is the science of getting
computers to act without being explicitly
programmed.”—

MACHINE LEARNING

DEEP LEARNING

Machine

Lizi’:s"?o Deep LeaHENE “Deep Learning is a sybﬁe/d o_f machine

flourish. breakthroughs drive ' learning concerned with algorithms
g  inspired by the structure and function of

the brain called artificial neural

networks”.—Machine Learning Mastery



https://www.collinsdictionary.com/dictionary/english/artificial-intelligence
https://www.coursera.org/learn/machine-learning/lecture/Ujm7v/what-is-machine-learning

Variety of ML/DL algorithms
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Need for Fast Sim
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Legend: “Sim at 50% of data” = FullSim sample is 50% the datasize, FastSim sample is 50% the datasize
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Generative Adversarial Netwoks
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*First example of simplified calorimeter simulation, CaloGan: M. Paganini et al.
arXiv:1712.10321



FastSim Atlas ATLAS

EXPERIMENT

During Run 1 and 2 of the LHC, a fast calorimeter simulation
(FastCaloSim) was successfully used in ATLAS.

An improved version of FastCaloSimv2 that incorporates the
experience gained with the Run 1 version is currently under
development.

The new FastCaloSim makes use of machine learning
techniques, such as principal component analysis and
neural networks, to optimise the amount of information stored
in the ATLAS simulation infrastructure.

PCA GAN
The longitudinal energy Generative Adversarial AT LAS
parametrization is based Network. The main EXPERIMENT
on a principal component concept behind this
analysis (PCA), to unsupervised generative
decorrelate deposited model is to train two
energies in the various neural networks to play a
calorimeter layers min-max game between

each other.



Longitudinal and lateral energy parameterization

The Longitudinal Energy Para

metrisation

5/16

Energy deposit in each calorimeter layer along the shower axis and total energy

Problem: The energy deposits in the various layers are correlated with each other

Transformation to uncorrelated set of variables with principal component analysis, to reduce complexity

1% PCA chain:
G4 Inputs:
Energy fractions N Cumulative Inverse NGaeaan PCA output data
Total energy distributions | error
— Ninputs function P i
L L " L 0
. N outputs
TPrincipal \ P
Example: Cumulative (reference) £ FAnassmusionpromay 3
Photons 65 GeV ¢ . ks smmonsuimns 3 o EmemOT® i
E | Geanid, y, E=65 GeV, 0.2<hi<0.25 i . .
L 1 § *%°F ATLAS Simuiation Prelimi
U —. § F i E 400F- Geantd, ;'e“:s‘;oev :;fp::froyzs
§ % ATLAS Simuiation Preiminary 1 * 150
u.) WE Geantd, y, E=65 GeV, 0 2<nj<0 25 . | 300
zsag E 250
m i 200

100f- i &eTTTeTT6r o3 o4 s
; | Cumuative energy fracton in EMB1

sob

e T R
Energy fraction in EMB1

During simulation, this chain is performed back-wards:

Gaussian Inverse Error
random PCA output :
numbers (Gaussians) function

OATLAS

EXPERIMENT

5 4 3 -2 -1 0 1 2 3 4

Transformed energy fraction in EMB1

Leading principal component

First principle component
is that eigenvector of the

Gaussian covariance matrix with the
largest eigenvalue (variance)
Uniform Inverse
numbers »| Regression Simulated
[0.1] Or Histogram Inputs

CHEP 2018, Jana Schaarschmidt (ATLAS)

The Lateral Energy Parametrisation (,,Shape*)

8/16

« Shower shape:
- Most energies in the center (close to the shower axis)
- Energy tails extending perpendicular to the axis

* The shape parametrisation is based on Geant4 HITs.

- Close-by hits merged to reduce computation time

- Hits saved in ntuple format to be used to derive histograms

» These 2D histograms act as probability density functions during

y[mm]

the fast simulation: Fast sim hits are randomly sampled from it

265GeV, 0.55 < In| < 0.60, EM Barrel 2

102

Normalized to unity

104

1

80-60-40-20 0 20 40 60 80

ATLAS Simulation Preliminary X [mm)]

» 2D histogram stored per layer
and per PCA bin

« Spline and regression techniques
can be used to reduce memory



Validation of the energy response

Validation of the energy response
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CHEP 2018, Jana Schaarschmidt (ATLAS)
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DNNCaloSim*

@ New approaches of fast simulation: DNNCaloSim A@

Deep generative networks to generate EM showers s, _ @

Generative Adversarial Network i ATLAS

ICHEP 2018, Hasib Ahmed (ATLAS)

&
Orw

Networks investigated:
Variational Auto Encoder (VAE)
Generative Adversarial Network (GAN)

Generative network with a feedback from a Discriminator network

Generator -
Latent sﬁaéez 1 % 4 % 3 % 3§'g Gener;fd
+ Only photons in EM calotimeter (< 1% §§§ :g‘g% §§§ ég’g ot
leakage to hadronic calorimeter) . W 3 L L 5
+ Energies [1, 260] logarithmically spaced Front layer [
*+ Pseudo rapidity 0.20 < |n| < 0.25 =
+ The energy deposits are voxalized into E I M- o i o i o : X
rectangular shapes - et g "2 §§§ §§§ %&ﬁ (L] simuston
+ A total of 266 cells are considered for _ € € €
energy deposits ’ Discriminator
+ The networks are trained with energies :
normalized to the energy of the incident [ [ | Improve the robustness of training by calculating Wasserstein loss with

particle

I L a two sided gradient penalty

Hasib Ahmed(U Edinburgh)

Loaw= E [D®]- E D]+ E [(1A:D)]] - 1]

X~Pgen X~PGeant4
ability to iden ability to identify alize ;
gene?;ted shonﬁrz Geant4 shower peoalines by calenlating Wasserstetn loss

ATLAS

EXPERIMENT *Based on CaloGan: M. Paganini et al.

arXiv:1712.10321

Hasib Ahmed(U Edinburgh)



DNNCaloSim

ICHEP 2018, Hasib Ahmed (ATLAS)

ATLAS

EXPERIMENT

- DNNCaloSim
~ ATLAS

EXPERIMENT
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FastSim Alice
ALICE (&

Using generative models for fast simulations in the TPC (Time

Projection Chamber) detector for the ALICE Experiment Cluster Simulation DCGAN
Substitute part of the simulation pipeline, namely particle The dataset consists of Class of networks that
propagation and translations to digits and clusters, with a 3D trajectories of use convolutional and
generative model, initialized with noise. particles after collision de-convolutional layers
generated using Monte to seek for and produce
Carlo simulation meaningful patterns

Translation to

: Digi
electronic BitSito

Collision Particles

generator propagation signals (digits) Clusters

Tracking

Generative

TTTTTTTTTTTT T Model



Deep Conditional Convolutional GAN

condDCGAN: Conditional DCGAN

100x1  99x1 76x7x 30 159x3x40 159x3x1

52x5x50
P = = 33x3 1 “
Py
o > =
m
deConvl deConv 2
q Input Dense1 *act +act deConv3 deConvs Output+

+act +act deConvd et sigmoid
+act

Generator

* Deep Conditional Convolutional GAN
» 2D Convolutional/ Deconvolutional Layers

* Leaky RelLU Activation

ALXCE

ALICE

CHEP 2018, Tomasz Trzcinski (ALICE)

5x1
PyPyP,MQquep | 64
159x3x150 I —. sa
159"3*1 135x3x70 11653550 - = II=%i1
I Conv 2 Conv3
Input Conv1 +act
Examples
Discriminator e
for the conditional
cluster simulation:
* Dropout

* Batch Normalization
» Sigmoid activation on outpt

CHEP 2018 | 10 July 2018 Tomasz Trzciriski

ALICE Simulation

PYTHIAG, Perugia-0, pp @ v = 7 Tev
TPC Clusters ®
+  GAN Simulation Px: 0.695 Gev/c
Full Simulation Py; 0239 Gevic

pr: 0.331 GeVic

ALICE Simulation

PYTHIAG, Perugia-0, pp @ V5 = 7 TeV

~100
0

X (cm) 200

Original event

ALICE Simulation

PYTHIAG, Perugia-0, pp @ VS = 7 Tev

TPC Clusters K+

+ GAN Simulation Pu: 1.414 Gevic
Full Simulation Py: 0.227 Gevic

Pri 0.428 GeVic

ALICE Simulation

PYTHIAG, Perugia-0, pp @ V3 = 7 TeV

uly 2018 Tomasz Trzcinski et al.



FastSim LHCDb

The simulation application for the LHCb experiment is Gauss

- Particle generation and transport in the detector Based
on the Gaudi framework

- Depends on a number of external libraries, including
Geant4 for particle transport

- A separate application, Boole, takes care of the
digitized detector’s response

Run Il

Collecting more
interesting events in Run
[l —and further — will
require more events to
be simulated

Simulation takes most of the LHCb CPU resources

FastSim need

Need to shift towards a
scenario where a
significant fraction of
LHCb MC events is fast-
simulated

jobs
8
g

Jobs by JobSplitType
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ICHEP2018, Mark Whitehead (LHCb)



A palette of fast simulations in LHCDb

ICHEP2018, Mark Whitehead (LHCDb)

“ Simplified detector simulation j Simulation of partial events

- Reduced detector: RICH-less or tracker-only - Simulate only particles from signal decay.

- Calorimeter showers fast simulation. | ReDecay, e.g. use N-times the non-signal decay part of the event.
- Muon low energy background, used with full muon detector

simulation.

Fully parametric simulation

- Parametrized tracking, calorimeter and particlelD objects with a
DELPHES-based infrastructure.

No single solution for all needs, but different options organized under the unique Gauss framework
Deploy solutions when mature for physics




Wasserstein Conditional GAN

Training scheme
Discriminator

''''' D(x
[ ] ——> score

256x4x4 /

/y Generator real ——
input == / - L D(%)

5x1:

PX, py, Pz, ...
—>
coneat ‘;’ Regressor (pretrained)
nzi?e —> \28"8"8 — ) "/ fake \ """ :&
x 32x32x32  30x30 €T \
——> input
A FC + reshape I;] spﬂ
128x8x8
— Upsampling 2x+Conv+BN+ReLU |- 64x16x16
30x30 32x32x32
cxHxw  — output tensor size (w/o batch size)
min E. p. . [D(z)|-E, D(x
— Conv s2 + LeakyReLU (gray = fixed) D Prse D(2)] ~Enp [ D( l]
+AE; p,[([|[VzD(2)||2 — 1)]

CxHxW CxHxW

ICHEP2018, Mark Whitehead (LHCDb)




Performance
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A generic FastSim -
approach ;

e
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‘

Geant4 .
shower

- CLIC calorimeter simulation for the proof of concept
- Data is essentially a 3D image

50GeV
8 O s0cev
Electromagnetic calorimeter detector design() § o E—— | +HE, i
(Linear Collider Detector studies) g - e
100:— "'+ *
* 1.5 minner radius, 5 mmx5 mm segmentation: N3 . e
25 tungsten absorber layers + silicon sensors w— -~ 50GeV —
1M single particle samples (e,y, ) mi—zf =
* Flat energy spectrum (10-500) GeV
400GeV

+ Orthogonal to detector surface

Ecal Energy
§
LN T
g ¥
g &
g
i
i

* +/- 10° random incident angle : ot +
] 3 -+ o
«E " 400GeV .
:._1—.'“.—5.....‘;....‘;....2%....25
Position along z axis

S Conne
Iy openlab

CHEP2018, Sofia Vallecorsa (OpenLab)



A generic FastSim
approach

Electrons enter the calorimeter with a
60°-120° angle range

Wider/asymmetric ima
Charged pions have small energy

Ly , Generalisation deposits

Generalisation

Variable angle sample

llJ ' - .

- xz " = Charged Pions .m“\aN Energy showers are delayed along Z
e, o 0018 \)‘:e\.\ —

’ T g f_ —ean
Preliminary &t ... . ) /FE N -+

P mf -

E #**“'#Iﬂ-ﬂ*iﬁiﬁ#ﬁiﬂhn i

Adjust convolution parameters to improve

energy description vs angle
~aw  Minimal architecture changes - | ; —
%, openlab N S I T T 7 s‘hape B
0 100 200 300 400 500
Ep GeV
£k Soenlab 12

CHEP2018, Sofia Vallecorsa (OpenLab)




Machine learning to empower physics modeling

- Machine learning applied to FASTSIM looks very promising

- What if we go one level beyond and we replace computationally
expensive physics models with ML blocks
= Able to learn complex cross-sections shapes (total, differential)?

= Able to directly generate the final-state?

Total cross-sections

-  From” to "physics-aware” neural e
network et i —
et OrKSs 5x106 /\N\\,\ "Ehgtzo14?32-23—92:‘1&"
Tralnlng Physics-aware supervised neural networks[1][2] \\
underlying the process 1108 \\

[barns]

- To be used to infer physical quantities
(momenta, directions, energies..)

= Both for continuous and discrete processes

ol LN
o N

0.0005 0.001 0.0015 0.002 0.0025
Energy [MeV]

[1] "QCD-Aware Recursive Neural Networks for Jet Physics”, Kyle Cranmer et Al, https://arxiv.org/abs/1702.00748 - Feb 2017
[2] Physics Informed Deep Learning: Data-driven Solutions of Nonlinear Partial Differential Equations, Maziar Raissi et Al,
https://arxiv.org/abs/1711.10561 - Nov 2017



Thanks for your attention.

Marilena Bandieramonte



FastSim CMS

Fast simulation (FastSim) is an integral part of CMS physics

studies and the CMS software framework.

- Speeds up CMS event simulation ~100 times and CMS event

simulation+reconstruction ~20 times.

- Regularly validated within the official CMS software release

validation framework.

- Mainly validated against FullSim. Reproduces FullSim mostly

by about 10%.

- Actively maintained by
~15 developers
working part time on
different aspects of
the framework.

S

- Mainly validated
against FullSim.
Reproduces FullSim

mostly by about 10%.

3
2
g
=
g

\ 8

LPCC 2017, Sezen Sekmen (CMS)

CMS FastSim flowchart

GenParticles
(hepMC)

Simulate energy
depositions along |[e—

subsystems . :
Hosy particle trajectory

ECAL, HCAL,

Tracker Muons

! Standard simulation of
Gaussian /’Femplate electronics (digitization, and
Sz hit reconstruction)

Fast emulation
Standard reconstruction
Objects (same for Fast&Full)

RecHits

Tracker ECAL, HCAL,

Track finding and Standard
reconstruction using MC truth reconstruction

Reconstructed particles
(same in Fast and Full)
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CMS Fast Sim

3%/ Why is FastSim fast?

557

CMS FastSim concept: CMS FastSim is a single, uniquely-defined

framework (as opposed to e.g. ATLAS, which consists of several
different levels of simulation).

Main difference wrt FullSim is in the simulation step. Low level
quantities are parametrized.

e Geometry is simplified.
e Material interactions are simplified and parametrized.
e Calorimetric showers are parametrized.

Hit reconstruction (RecHits) mostly follows standard reconstructic
(applied to FullSim and data). Exception:

e Tracking RecHits: No digitization and local reco in tracker.
RecHits emulated by smearing SimHits.

Object reconstruction mostly follows standard reconstruction
(applied to FullSim and data). Exception:

¢ Track reconstruction / finding emulated with help from MC trutt

= Compact Muon Solenoid

LPCC 2017, Sezen Sekmen (CMS)

mta/FUIISim: Combinations of hits need to identified from a nearly infinite number o

o

RecHits from charge
deposits

—0-00—
0-0—0—0-
—O—0—0-

B

seeding: find start of
potential trajectories

hit permutations created by charged particle trajectories, bent by the B field.

0
trajectory fit: global fit
to estimate track

parameters. J

trajectory finding: add
hits to the seed that
supports trajectory
hypothesis

ﬁstSim track reco: Restrict seeding and trajectory finding to only a local subsem

RecHits from charge
deposits

|

Look up particle truth
information

hits using MC truth information. Large speed up by skipping permutations.

* create seeds
* build a track candidate
« fit a track.

Iterativats

Create subsets of
consistent RecHits 11




End-to-end learning

> All varieties of deep learning gaining traction
> Convolutional, Recurrent, LSTM, GANS
> Tree-based methods (XGBoost) still maintain some
competitiveness
> Machine learning models increasingly used together with
low-level information

 Raw data, low-level variables

N+ ._f'{.’:' : Raw Sparsified  Reco Select Ana
4 “. Ll b A \ \\.;':'.:’..' .

le7 1e3 100 50 1

Image credit: K. Cranmer




Key

= Electron

= = = - Neutral Hadron (e.g. Neutron)

End-to-end learning

Muon

Charged Hadron (e.g. Pion)

=== Photon

Transverse slice
through CMS

» PARTICLE AND EVENT ID CLASSIFIER WITH CNN

Able to learn particle kinematics and shower shapes
Classifier output can be de-correlated from mass of signal resonance

Well-suited to decays where particles can’t be fully resolved/
reconstructed

Can tackle arbitrary decays: train on whole Standard Model on
same network

08

Background Rejection

00

Event ID: Results™, Barrel+Endcap

H—vyy vs y+jet
component

H=yy vs yy

Gk A component

o
o

o
-
o
-

Background Rejection
Background Rejection

o
~
=)
~

4.mom, AUC = 0.73
—— ECAL AUC = 081
~ CMS-1, AUC = 0.80
—— CMS.Hl, AUC = 081

- 4.mom, AUC = 0.71
—— ECAL AUC = 0.70
~—= CMS, AUC = 0.69
—— CMSJL AUC = 0.69

4.mom, AUC = 0.74
—— ECAL AUC = 091
—— CMS4, AUC = 091
—— CMSJI, AUC = 0.92

o
o
=3
=3

00 0‘2 Ovl 06 0'8 1‘0 0‘0 0‘2 04 06 08 1'0 OVO 02 0'4 06 08 l'o
Signal Efficiency Signal Efficiency Signal Efficiency

Similar performance as before = scale well to multiple subdetector images

Subdetectors other than ECAL mostly contain noise from PU or underlying event
= little to no penalty in including additional noisy subdetector images

Not very sensitive to choice of geometry segmentation (in this study)

2o *Using 2012 CMS Simulated Open Data
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