
Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Vectorization of
Bertini cascade

J.G.Lima (FNAL), S.Y. Jun (FNAL)
and T. Koi* (SLAC)

GeantV bi-weekly meeting
August 21, 2018

* T.Koi is not active
in this project anymore

2 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Outline
● Introduction

– goals and scope
● Progress

– process fow and vectorization
– features request
– preliminary results

● Current status and prospects

3 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

SLAC-FNAL pilot project on Geant R&D
Explore new computing avenues for hadronic physics simulation in HEP

Goals

• Provide standalone, vectorized Bertini algorithms (a specifc hadronic cascade model)

• Modularized components (Geant4 and GeantV)

• Modern hardware technologies and parallel architectures

Project scope

• Modularize Geant4 Bertini cascade model and optimization – T.Koi (SLAC)

• SIMD vectorization of some computing-intensive algorithms – G. Lima (FNAL)

• Integration and computing performance evaluation – S.Y. Jun (FNAL)

• Identify requirements for future extension/development

Co-PIs: D. Elvira (FNAL) and A. Dotti (SLAC)

Hadronic simulation is an important missing component of the GeantV vector prototype,
which explores fne-grain parallelism using a top to bottom vectorization approach for

particle transport simulation for next generation detector simulation.

Bertini cascade was chosen for this project, since it is the preferred model for low energy
hadron-nucleus interactions and it handles a large number of particle types.

4 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Implementation details and choices
● Use detailed profling to identify

CPU-heavy algorithms to
demonstrate performance gains
from vectorization

● Redesign data structures to
promote vectorization with
minimal overhead (SoA structures)

● Use templated types to write
generic kernels to be instantiated
using scalar or vector types as
needed

● VecCore package to isolate the
complexities of vectorization
implementation from algorithms

● Benchmark every vectorized class,
for close performance monitoring

● Validate physics simulation results
with respect to Geant4

5 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Progress on Bertini vectorization
● Combining a top-down approach...

– Vectorizing function interfaces (passing SIMD-vectors down into algorithms)
– Vectorized utilities (e.g. rotations, Lorentz boosts, ...) and data structures (InuclParticle

and InuclElementaryParticle classes)
– Processing fow: lots of sanity checks and triage based on particle types

→ assume homogeneous SIMD-vector inputs – e.g. [p][C] becomes [pp...p] onto [CC...C]

→ hadron-hadron, hadron-nucleus, nucleus-nucleus collisions (algorithm functions)

● … and a bottom-up approach
– Generic kernels for generating multiplicity, particle types, kinematics (momenta, angles)

● hadron-hadron collisions: class G4ElementaryParticleCollider (lots of non-trivial functions)

– Math functions – Log, Exp, Pow, Factorial, LogFactorial
● Not obvious how to vectorize, e.g. Pow([x1, x2, x3, x4], [n1, n2, n3, n4])
● Eventually moved into VecMath, if useful outside of Bertini

– Currently vectorizing the functions to generate multiplicities and FS types, and their
validation tests and benchmarks.
(I hope to have new benchmark numbers available by the time of Collab. Meeting)

● Next pages, pseudo-code is used to illustrate vectorization progress, and
rationale behind suggestions for algorithmical changes

6 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Class G4ElementaryParticleCollider
Functions: generateSCMfinalState(), generateMultiplicity(), generateOutgoingPartTypes()

Are these possible
to be vectorized?
Maybe, if and only if
multiplicity is
homogeneous

Experiment with
intra-algorithm

re-basketization

7 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

G4CascadeFinalStateAlgorithm class

Several different objects
returned depending on
is (initial state),
fs (final state)
and multiplicity

8 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Redesigning for vectorization
● Requesting new supporting tools

– Vectorization efciency requires homogeneous lanes (for maximum lane synchronization)

● Hadronic processes tend to diverge quickly
– GeantV baskets: homogeneous input arrays for simulation

● e.g. [pp...p] on [Scint, Scint, … Scint]
● Bertini: protons will collide with either C-atoms or H-atoms

→ rebasketizing here will promote higher levels of lane synchronization

– from previous slide: multiplicity-based basketization is particularly important for Bertini algos
● both fnal state and kinematics sampling algorithms are based on multiplicity

→ rebasketizing by multiplicity promotes the development of more efcient Bertini kernels

→ proposed functionality: intra-algorithm (or algorithm-level) re-basketization

● Another challenge: dealing with Vector<int> and Vector<double> in the same
algorithms
– VcVector<long int> is not supported by Vc library
– Work-around: using Int_v = VcSimdArray<VectorSize<Real_v>> to create SIMDVectors of ints

corresponding to doubles

→ best long-term solution: native suport from VecCore
● to be discussed with VecCore developers

9 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Vectorizing math functions
● Modularized gxbert code contains some “fast math functions”

– tabulated exp(x) for integer or half-integer x, truncated O(x3) Taylor series
for |x|<84, otherwise use VDT implementation (internal vectorization)

– tabulated log(x) for integers up to 512, otherwise use VDT implementation
– specialized Pow(x,y) for integer x or y, etc…

● Hard to implement fully vectorized versions
– e.g. Pow([x1, x2, x3, x4], [n1, n2, n3, n4])
– vectorize interface only, [Pow(x1,n1), Pow(x2,n2), Pow(x3,n3), Pow(x4,n4)]

● scalar functions are called once per lane, to build the SIMD vector
● this is actually how it is done in VecCore, e.g. Sin(), Cos(), Abs(), …
● slower than original implementation due to SIMD storing overhead

– the vectorized interface is useful to simplify vectorization of mathematical
expressions involving such functions (maybe worthy the overhead)

– some vectorization is possible on the “fast” versions

● See next pages for some performance comparisons

10 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Two illustrative preliminary results
● Unit test for InuclElementaryParticle

● Benchmark for GXLorentzConvertor (~4x faster)

New SoA data structures can handle
particles of different types

11 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Benchmarking math functions

● Preliminary conclusion: overhead of
vectorized interface is signifcant, but it is
probably worth the convenience.

● In some cases, the fast Geant4
implementation is not better than the
standard version, so we can use it for those
cases.

● Preliminary measurements of relative performance (AVX)

– Original: Geant4 “fast” implementations (global/management)

– Scalar, Vector: my “vectorized interface” versions, templated on scalar
or vectorized types, calling Geant4 “fast” implementations

– ScalarStd, VectorStd: same as above, but calling std::functions instead
of the Geant4 “fast” implementations

~2x

~4x

~2x

12 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Current status
● What has been accomplished

– Git repository available: https://github.com/gxbert/gxbert.git
– Basic infrastructure for development, unit testing and

performance evaluation (v01 done)
– New SoA data structure for tracks and kinematics (v01 done,

extensions needed for nuclei)
– Vectorized ThreeVectors (a la CLHEP) and LorentzVectors (done)
– Basic algorithms for Lorentz boosts (Lab frame ↔ projectile ↔

center of mass frame) as needed (done)
● measured speedups of up to 4x in avx mode (theo.max = 4) w.r.t.

scalar mode
● additional 25% gain (scalar vs. G4), due to less branching and better

memory locality

– Integration of our vectorized pRNG (pseudo-Random Number
Generator) (done, not yet VecMath)

13 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Prospects
● What can be done in the short- to medium-term (h-h interactions)?

– Currently vectorizing algorithms that handle hadron-hadron interactions
– Finalize vectorized interfaces of all processing fow (under way)
– Vectorization of all algorithms which can deal with homogeneous input (under way)
– Unit tests and benchmarks for vectorized functions (partly done)
– I am more optimistic now than at the beginning of this project.

● What requires more time
– Full cascade algorithms – it is a long process, because of the large number of non-trivial

functions involved.
[see backup slides for more details on the Bertini processing fow]

– Supporting tools will be very helpful
● Intra-algorithm re-basketization in GeantV
● Native support to Vector<double> ← → Vector<int> in VecCore

– Full vectorized prototype corresponding to Tatsumi’s tests for hadron-nucleus toy
experiments, showing some speedup due to vectorization (not started)

– Vectorization of hadron-nucleus and nucleus-nucleus processes (is Bertini used for those?)
– profling-based optimization of vectorized algorithms

● Assessment of performance gains

Backup slides

15 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Bertini processing fow
● Start from Tatsumi’s example, gxbertTest, which:

– Sets up a large number of homogeneous collisions
(e.g. projectiles(=protons) on targets(=Lead)

– calls GXCascadeInterface::ApplyYourself(bullet,target) for each pair

16 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Class G4InuclCollider
We try to simplify complex inheritance structures

hadron-hadron collisions

hadron-nucleus or
nucleus-nucleus collisions

17 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Class G4ElementaryParticleCollider
Function: collide()

This class has a large number of non-trivial functions!

Plans to re-write these steps
with vectorization in mind, to
profit from vectorized boosts.
Originally, all secondaries are
stored in an std::vector.

18 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

Class G4ElementaryParticleCollider
Functions: generateSCMfinalState(), generateMultiplicity(), generateOutgoingPartTypes()

Are these possible
to be vectorized?
Maybe, iff multiplicity
is homogeneous

Experiment with
intra-algorithm

re-basketization

19 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

G4CascadeFinalStateGenerator class

20 G. LimaGeantv Bi-weekly Meeting – 2018-08-21

G4CascadeFinalStateAlgorithm class

Several different objects
returned depending on
is (initial state),
fs (final state)
and multiplicity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

