


Software upgrade status
Sébastien Ponce
sebastien.ponce@cern.ch

April 4th 2017 Software upgrade status 2



Overall context

• Run3 needs have triggered the modernization of
the LHCb software

• in order to gain in efficiency
• in order to allow the usage of new hardware

• Effort is targeted on the TDR
• due by the end of 2017
• where decisions have to be taken

• Internal milestone end of March
• current status
• evaluation of the strategy

April 4th 2017 Software upgrade status 3



The master plan

Dec 17 TDR ready

Sep 17 Performance optimizations

Mar 17 MiniBrunel ready - performance measured

Dec 16 Develop functional framework

April 4th 2017 Software upgrade status 4



Areas concerned

• LHCb core framework

• Event model

• Conditions

• Detector Description

• Collaboration training

April 4th 2017 Software upgrade status 5



Outline

Strategy and current Status
Core framework
Event Model
Detector description
Conditions
Code optimization

Challenges and Risks

Collaboration training

Conclusions

April 4th 2017 Software upgrade status 6



Outline

Strategy and current Status
Core framework
Event Model
Detector description
Conditions
Code optimization

Challenges and Risks

Collaboration training

Conclusions

April 4th 2017 Software upgrade status 7



Framework - Where do we stand ?

• The functional framework is functional :-)
• used in many algorithms (close to 100)
• used in 2017 production

• “MiniBrunel”
• MiniBrunel is not so mini !

• includes Kalman filter, full Rich reconstruction

• it has an HLT1 version
• Performance extensively measured

• very good behavior of multithreading
• coherent with upgrade performance document

April 4th 2017 Software upgrade status 8



Acceleration with multithreading

April 4th 2017 Software upgrade status 9



Acceleration on KNL

April 4th 2017 Software upgrade status 10



Memory usage with multithreading

April 4th 2017 Software upgrade status 11



Event Model : what changes ?

• Change access pattern to the Event Store
• write once, read-only after write
• imposed by multi-threading

• Allow for object composition to compensate
• Introduce Structures of Arrays (SoA)

• to boost gains due to auto vectorization
• Review usage of doubles

• replace with floats when possible

• Test all this in MiniBrunel

April 4th 2017 Software upgrade status 12



Event Model - Where do we stand ?
• TES is now read-only

• less impact than foreseen
• most code can be adapted by splitting objects

• Composition can be achieved using “range v3”
• often enough for transient data
• used successfully to port the RICH code

• SoA components have been developed
• ready to be tested
• starting to measure benefits

• Switching double to floats has been tested
• Vectorized Kalman filter goes 2x faster

April 4th 2017 Software upgrade status 13



Example of SoA on PixelTracking
const PrPixelHit* bestHit(const PrPixelModuleHits& modulehits, ...)

class PrPixelModuleHits final {

std::vector<PrPixelHit> m_hits;

};

class PrPixelHit final {

float m_x;

float m_y;

float m_z;

};

In this test, SOA was crafted manually

April 4th 2017 Software upgrade status 14



SOAContainer & SOAView
// AOS - style object

struct Hit {

float m_x;

float x() const noexcept { return m_x; }

};

// SOA - style

struct HitFields { // fields defined as types

typedef struct : public SOATypelist::wrap_type<float> {} f_x;

}

// Skin decorating HitFields

template ... struct HitSkin : ... , HitFields {

auto & x() const noexcept { return this->template get<f_x> (); }

}

SOAContainer <std::vector, HitSkin, HitFields::f_x> hits;

hits.reserve(...);

hits.emplace_back(...);

April 4th 2017 Software upgrade status 15



Detector Description

Current implementation

• is not thread safe

• is not maintained

Plans

• Investigate DD4Hep as replacement
• Use a minimal geometry

• to speed up tracking

April 4th 2017 Software upgrade status 16



DetDesc - Where do we stand ?

• Full geometry has been converted to DD4Hep
• validation is ongoing

• The minimal geometry has been defined
• is default in MiniBrunel

• Efficiency of the code has been reviewed
• not optimal, opportunity of optimizations

April 4th 2017 Software upgrade status 17



MiniBrunel’s flops consumers

• A lot of flops in the geometry

• Not much of vectorization

• Mostly coming from isInside

• Bounding boxes in global coordinates would help

April 4th 2017 Software upgrade status 18



Conditions - The goals

• Adapt our conditions’ interfaces to
multithreaded environment

• multiple concurrent events
• may not have same conditions

• Change our transient representation
• triggered by the move to DD4Hep

• Change our persistent representation
• from XML to something simpler to parse

• Change our tools to manage condition files
• from COOL/Coral to something simpler and

maintained

April 4th 2017 Software upgrade status 19



Conditions - Where do we stand ?

• A prototype of thread safe conditions have been
proposed for Gaudi

• under discussion at Gaudi level
• looks promising from LHCb point of view

• Conditions Management switching to git
• faster, smaller, easier than COOL/Coral
• allows to drop a lot of code
• ready to be used, being commissionned for 2017 run

• Changing file format will be easier once
geometry is separated

April 4th 2017 Software upgrade status 20



Optimization Status
• Running on multiple/many cores validated
• Detailed timing of MiniBrunel

• efficiency timing of HTL1
• impact of O2/O3/Ofast/sse/avx/avx2
• per algorithm/function timing

• Vectorization studied in details
• where is code vectorized/not vectorized
• where do we spend scalar flops ?

• Cache efficiency and mispredictions
• Tools are in place, first tests done

• Studies on algorithm efficiencies
• e.g. efficiency of cuts

April 4th 2017 Software upgrade status 21



Acceleration on KNL

April 4th 2017 Software upgrade status 22



Optimization Status
• Running on multiple/many cores validated
• Detailed timing of MiniBrunel

• efficiency timing of HTL1
• impact of O2/O3/Ofast/sse/avx/avx2
• per algorithm/function timing

• Vectorization studied in details
• where is code vectorized/not vectorized
• where do we spend scalar flops ?

• Cache efficiency and mispredictions
• Tools are in place, first tests done

• Studies on algorithm efficiencies
• e.g. efficiency of cuts

April 4th 2017 Software upgrade status 23



MiniBrunel time distribution

Figure: HLT1 on Minimum bias

Figure: HLT1 on signal

April 4th 2017 Software upgrade status 24



MiniBrunel time distribution

Figure: HLT1 on Minimum bias Figure: HLT1 on signal

April 4th 2017 Software upgrade status 24



Impact to compiler optimizations

April 4th 2017 Software upgrade status 25



Optimization Status
• Running on multiple/many cores validated
• Detailed timing of MiniBrunel

• efficiency timing of HTL1
• impact of O2/O3/Ofast/sse/avx/avx2
• per algorithm/function timing

• Vectorization studied in details
• where is code vectorized/not vectorized
• where do we spend scalar flops ?

• Cache efficiency and mispredictions
• Tools are in place, first tests done

• Studies on algorithm efficiencies
• e.g. efficiency of cuts

April 4th 2017 Software upgrade status 26



Flops usage
Extension of callgrind allowing to count flops

• and differentiate scalar from SIMD

• but also different vector widths

• and floats from doubles

April 4th 2017 Software upgrade status 27



Optimization Status
• Running on multiple/many cores validated
• Detailed timing of MiniBrunel

• efficiency timing of HTL1
• impact of O2/O3/Ofast/sse/avx/avx2
• per algorithm/function timing

• Vectorization studied in details
• where is code vectorized/not vectorized
• where do we spend scalar flops ?

• Cache efficiency and mispredictions
• Tools are in place, first tests done

• Studies on algorithm efficiencies
• e.g. efficiency of cuts

April 4th 2017 Software upgrade status 28



Example of SoA on PixelTracking
const PrPixelHit* bestHit(const PrPixelModuleHits& modulehits, ...)

class PrPixelModuleHits final {

std::vector<PrPixelHit> m_hits;

};

class PrPixelHit final {

float m_x;

float m_y;

float m_z;

};

In this test, SOA was crafted manually

April 4th 2017 Software upgrade status 29



Optimization Status
• Running on multiple/many cores validated
• Detailed timing of MiniBrunel

• efficiency timing of HTL1
• impact of O2/O3/Ofast/sse/avx/avx2
• per algorithm/function timing

• Vectorization studied in details
• where is code vectorized/not vectorized
• where do we spend scalar flops ?

• Cache efficiency and mispredictions
• Tools are in place, first tests done

• Studies on algorithm efficiencies
• e.g. efficiency of cuts

April 4th 2017 Software upgrade status 30



PrPixel Algo efficiency (1)

About ordering of the cuts...

...are we optimal ?

April 4th 2017 Software upgrade status 31



PrPixel Algo efficiency (2)

const PrPixelHit *PrPixelTracking::bestHit() {

// Do a binary search through the hits.

unsigned int hit_start = ...

// Find the hit that matches best.

for (unsigned int i = hit_start; ...) { ... }

}

Where do we spend time ?

• 80% of instructions are in the loop

• but 60% of the time is spent in binary search

Seen thanks to VTune

April 4th 2017 Software upgrade status 32



Outline

Strategy and current Status
Core framework
Event Model
Detector description
Conditions
Code optimization

Challenges and Risks

Collaboration training

Conclusions

April 4th 2017 Software upgrade status 33



Framework
Challenges

• merge back future work into master branch
• aggressive strategy once 2017 production is branched

• adapt the framework to an online usage
• started and ongoing

• adapt the framework to simulation usage
• multi event algorithms

Risks

• MiniBrunel not being representative

• personpower to port algorithms (in subsystems)

April 4th 2017 Software upgrade status 34



Event Model
Challenges

• Do we need transparent composition ?
• for non transient data, the Packing step may save us
• may be complex, not easy to use for the end user

• Validation of physics with floats
• where can we use them ?

• Usage of structure of arrays

Risks

• Missing person power
• has to come from the subsystems

April 4th 2017 Software upgrade status 35



DetDesc

Challenges

• Validation of DD4Hep

• Validation of minimal geometry for tracking

• Integration of DD4Hep in LHCb code

Risks

• Being stuck with unmaintained framework
• mitigation : preload geometry before starting threads

April 4th 2017 Software upgrade status 36



Conditions

Challenges

• Implement new condition interface in Gaudi
• Adapt transient representation to DD4Hep

• conditions and geometry are tightly linked

Risks

• Lack of thread safe interface
• mitigation : keep our conditions stable within a file

April 4th 2017 Software upgrade status 37



Outline

Strategy and current Status
Core framework
Event Model
Detector description
Conditions
Code optimization

Challenges and Risks

Collaboration training

Conclusions

April 4th 2017 Software upgrade status 38



Training - Why ? Who ? What ?

• We are changing considerably the framework
• the language used (C++17 now)
• the common practices (e.g. TES, functional)
• the tools around it (e.g. git)

• Everyone is impacted
• many will have to convert code
• others will write new algorithms

• We need a substantial training effort
• on the languages and tools
• on the best practices

April 4th 2017 Software upgrade status 39



Training - What was done so far

• Development kit
• Workshops and Hackathons

• user oriented hackathons
• extended C++courses
• tutorials on framework and tools
• practical courses

• converting code to new framework
• vectorization
• efficient cache usage (to come)

April 4th 2017 Software upgrade status 40



LHCb C++courses

April 4th 2017 Software upgrade status 41



LHCb hackathons

April 4th 2017 Software upgrade status 42



And the legendary pasta

April 4th 2017 Software upgrade status 43



Complemented with home made cakes

April 4th 2017 Software upgrade status 44



Training - Effort need to continue

• improve development kit

• other hackathons

• more courses

• participate to intel workshop

April 4th 2017 Software upgrade status 45



Outline

Strategy and current Status
Core framework
Event Model
Detector description
Conditions
Code optimization

Challenges and Risks

Collaboration training

Conclusions

April 4th 2017 Software upgrade status 46



Summary

• The framework is under control
• Event Model, Conditions and DetDesc are

progressing well
• but more effort will be needed

• Performance measurement is well advanced
• bringing many opportunities of optimizations
• that will be tested soon

• Training of subsystem developers is essential
• as we need all of them to be involved
• as most of the person power has to come from them

April 4th 2017 Software upgrade status 47




	Strategy and current Status
	Core framework
	Event Model
	Detector description
	Conditions
	Code optimization

	Challenges and Risks
	Collaboration training
	Conclusions

