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Overall context

• Run3 needs have triggered the modernization of
the LHCb software

• in order to gain in efficiency
• in order to allow the usage of new hardware

• Effort is targeted on the TDR
• due by the end of 2017
• where decisions have to be taken

• Internal milestone end of March
• current status
• evaluation of the strategy
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The master plan

Dec 17 TDR ready

Sep 17 Performance optimizations

Mar 17 MiniBrunel ready - performance measured

Dec 16 Develop functional framework
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Areas concerned

• LHCb core framework

• Event model

• Conditions

• Detector Description

• Collaboration training
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Framework - Where do we stand ?

• The functional framework is functional :-)
• used in many algorithms (close to 100)
• used in 2017 production

• “MiniBrunel”
• MiniBrunel is not so mini !

• includes Kalman filter, full Rich reconstruction

• it has an HLT1 version
• Performance extensively measured

• very good behavior of multithreading
• coherent with upgrade performance document
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Acceleration with multithreading
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Acceleration on KNL
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Memory usage with multithreading
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Event Model : what changes ?

• Change access pattern to the Event Store
• write once, read-only after write
• imposed by multi-threading

• Allow for object composition to compensate
• Introduce Structures of Arrays (SoA)

• to boost gains due to auto vectorization
• Review usage of doubles

• replace with floats when possible

• Test all this in MiniBrunel
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Event Model - Where do we stand ?
• TES is now read-only

• less impact than foreseen
• most code can be adapted by splitting objects

• Composition can be achieved using “range v3”
• often enough for transient data
• used successfully to port the RICH code

• SoA components have been developed
• ready to be tested
• starting to measure benefits

• Switching double to floats has been tested
• Vectorized Kalman filter goes 2x faster
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Example of SoA on PixelTracking
const PrPixelHit* bestHit(const PrPixelModuleHits& modulehits, ...)

class PrPixelModuleHits final {

std::vector<PrPixelHit> m_hits;

};

class PrPixelHit final {

float m_x;

float m_y;

float m_z;

};

In this test, SOA was crafted manually
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SOAContainer & SOAView
// AOS - style object

struct Hit {

float m_x;

float x() const noexcept { return m_x; }

};

// SOA - style

struct HitFields { // fields defined as types

typedef struct : public SOATypelist::wrap_type<float> {} f_x;

}

// Skin decorating HitFields

template ... struct HitSkin : ... , HitFields {

auto & x() const noexcept { return this->template get<f_x> (); }

}

SOAContainer <std::vector, HitSkin, HitFields::f_x> hits;

hits.reserve(...);

hits.emplace_back(...);
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Detector Description

Current implementation

• is not thread safe

• is not maintained

Plans

• Investigate DD4Hep as replacement
• Use a minimal geometry

• to speed up tracking
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DetDesc - Where do we stand ?

• Full geometry has been converted to DD4Hep
• validation is ongoing

• The minimal geometry has been defined
• is default in MiniBrunel

• Efficiency of the code has been reviewed
• not optimal, opportunity of optimizations
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MiniBrunel’s flops consumers

• A lot of flops in the geometry

• Not much of vectorization

• Mostly coming from isInside

• Bounding boxes in global coordinates would help
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Conditions - The goals

• Adapt our conditions’ interfaces to
multithreaded environment

• multiple concurrent events
• may not have same conditions

• Change our transient representation
• triggered by the move to DD4Hep

• Change our persistent representation
• from XML to something simpler to parse

• Change our tools to manage condition files
• from COOL/Coral to something simpler and

maintained

April 4th 2017 Software upgrade status 19



Conditions - Where do we stand ?

• A prototype of thread safe conditions have been
proposed for Gaudi

• under discussion at Gaudi level
• looks promising from LHCb point of view

• Conditions Management switching to git
• faster, smaller, easier than COOL/Coral
• allows to drop a lot of code
• ready to be used, being commissionned for 2017 run

• Changing file format will be easier once
geometry is separated
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Optimization Status
• Running on multiple/many cores validated
• Detailed timing of MiniBrunel

• efficiency timing of HTL1
• impact of O2/O3/Ofast/sse/avx/avx2
• per algorithm/function timing

• Vectorization studied in details
• where is code vectorized/not vectorized
• where do we spend scalar flops ?

• Cache efficiency and mispredictions
• Tools are in place, first tests done

• Studies on algorithm efficiencies
• e.g. efficiency of cuts
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Acceleration on KNL
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MiniBrunel time distribution

Figure: HLT1 on Minimum bias

Figure: HLT1 on signal
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MiniBrunel time distribution
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Impact to compiler optimizations
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Flops usage
Extension of callgrind allowing to count flops

• and differentiate scalar from SIMD

• but also different vector widths

• and floats from doubles
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Example of SoA on PixelTracking
const PrPixelHit* bestHit(const PrPixelModuleHits& modulehits, ...)
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};
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};
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PrPixel Algo efficiency (1)

About ordering of the cuts...

...are we optimal ?
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PrPixel Algo efficiency (2)

const PrPixelHit *PrPixelTracking::bestHit() {

// Do a binary search through the hits.

unsigned int hit_start = ...

// Find the hit that matches best.

for (unsigned int i = hit_start; ...) { ... }

}

Where do we spend time ?

• 80% of instructions are in the loop

• but 60% of the time is spent in binary search

Seen thanks to VTune
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Framework
Challenges

• merge back future work into master branch
• aggressive strategy once 2017 production is branched

• adapt the framework to an online usage
• started and ongoing

• adapt the framework to simulation usage
• multi event algorithms

Risks

• MiniBrunel not being representative

• personpower to port algorithms (in subsystems)
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Event Model
Challenges

• Do we need transparent composition ?
• for non transient data, the Packing step may save us
• may be complex, not easy to use for the end user

• Validation of physics with floats
• where can we use them ?

• Usage of structure of arrays

Risks

• Missing person power
• has to come from the subsystems
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DetDesc

Challenges

• Validation of DD4Hep

• Validation of minimal geometry for tracking

• Integration of DD4Hep in LHCb code

Risks

• Being stuck with unmaintained framework
• mitigation : preload geometry before starting threads
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Conditions

Challenges

• Implement new condition interface in Gaudi
• Adapt transient representation to DD4Hep

• conditions and geometry are tightly linked

Risks

• Lack of thread safe interface
• mitigation : keep our conditions stable within a file
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Training - Why ? Who ? What ?

• We are changing considerably the framework
• the language used (C++17 now)
• the common practices (e.g. TES, functional)
• the tools around it (e.g. git)

• Everyone is impacted
• many will have to convert code
• others will write new algorithms

• We need a substantial training effort
• on the languages and tools
• on the best practices
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Training - What was done so far

• Development kit
• Workshops and Hackathons

• user oriented hackathons
• extended C++courses
• tutorials on framework and tools
• practical courses

• converting code to new framework
• vectorization
• efficient cache usage (to come)
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LHCb C++courses
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LHCb hackathons
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And the legendary pasta
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Complemented with home made cakes
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Training - Effort need to continue

• improve development kit

• other hackathons

• more courses

• participate to intel workshop
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Summary

• The framework is under control
• Event Model, Conditions and DetDesc are

progressing well
• but more effort will be needed

• Performance measurement is well advanced
• bringing many opportunities of optimizations
• that will be tested soon

• Training of subsystem developers is essential
• as we need all of them to be involved
• as most of the person power has to come from them
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