Interpretation of cosmic-ray data: the need for nuclear production cross sections (XS)

- 1. Introduction: Galactic cosmic-rays (GCR)
- 2. A quick tour of AMS-02 recent results
- 3. Nuclear XS: a limiting factor to go further
- 4. XS wanted! A roadmap for NA61
- 5. Conclusions

1. Introduction: GCR spectrum and composition

Spectral shape

vs diffuse γ-rays, pbar, e⁻ and e⁺

Protons and He

N.B.: rare CRs produced by H,He + ISM

- → How well do we know the astro. production?
- → Is it a good place to look for dark matter?

- → Acceleration mechanisms: injection, efficiency, ...
- → Transport: diffusion, convection, energy gain and losses...
- \rightarrow CR anisotropy $\delta < 10^{-3}$ (\neq E and species)

1. Introduction: GCR journey

(astrophysics + particle physics)

1. Introduction: GCR nuclear interaction

1. Introduction: secondary-to-primary ratio

1. Introduction: B/C to calibrate transport

→ Transport parameters calibrated on B/C

1. Introduction: rare channel and astrophysical background

→ Same propagation history for B/C, or pbar/p (apply previously derived parameters)

1. Introduction: rare channel and dark matter signal

- 1. Introduction: Galactic cosmic-rays (GCR)
- 2. A quick tour of AMS-02 recent results
- 3. Nuclear XS: a limiting factor to go further
- 4. XS wanted! A roadmap for NA61
- 5. Conclusions

Take away message

→ AMS-02 results are changing the field of CR physics (high precision data and anomalies in spectra)

2. Recent results: high precision era with AMS-02

AMS-02

- Particle physics detector in space (redundancy, robust identification)
 - Spectra for nuclei, antiprotons, and leptons
 - → Several times the statistics of all CRs ever measured → Typical 1-3% accuracy from GV to TV

2. Recent results: antiprotons and positron fraction

Antiprotons

→ Seems consistent with astrophysics only

See F. Donato and N. Tomassetti's talks (this afternoon)

2. Recent results: antiprotons and positron fraction

→ Seems consistent with astrophysics only

See F. Donato and N. Tomassetti's talks (this afternoon)

Positron fraction, e⁻, e⁺ and e⁻+e⁺ spectra used to test astrophysical and/or dark matter hypothesis

- Contribution from local SNRs/pulsars?
 - → e.g., Delahaye et al., A&A 524, A51 (2010)
- Dark matter hypothesis?
 - → e.g., Boudaud et al., A&A 575, 67 (2015)

[N.B.: no boost, Lavalle et al., A&A 479, 427 (2008)]

N.B.: see also e- and e+ in Aguilar et al., PRL 113, 121102 (2014)

2. Recent results: p and He, B/C

2. Recent results: p and He, B/C

- 1. Introduction: Galactic cosmic-rays (GCR)
- 2. A quick tour of AMS-02 recent results
- 3. Nuclear XS: a limiting factor to go further
- 4. XS wanted! A roadmap for NA61
- 5. Conclusions

Take away message

→ 1G\$ game-changing data 'cannot be' exploited because of GeV nuclear physics (XS uncertainties >> AMS-02 data uncertainties)

3. Nuclear XS: a limiting factor to go further

3. Nuclear XS: a limiting factor for B/C

Nuclear $XS \rightarrow$ dominant systematics on transport parameters

3. Nuclear XS: a limiting factor for pbar

Nuclear XS → dominant systematics on transport parameters → further increase uncertainties on pbar calculations

3. Nuclear XS: a limiting factor for propagation parameters

Nuclear $XS \rightarrow$ dominant systematics on transport parameters

- 1. Introduction: Galactic cosmic-rays (GCR)
- 2. A quick tour of AMS-02 recent results
- 3. Nuclear XS: a limiting factor to go further
- 4. XS wanted! A roadmap for NA61
- 5. Conclusions

Take away message

- → Timely win-win opportunity to help each other, as a united HE physics community (ranking of the most important XS to exploit AMS-02 data, discussion desired to ensure all necessary information available)
 - → Work present in the following slides will appear soon as Genolini, [Kirby,] Maurin, Moskalenko (in prep.)

4. XS wanted: main reaction contributing to B

Which X-section channels should be measured with high precision?

Illustration with Boron

$$B = {}^{10}B + {}^{11}B$$

$$(\sim 30\%) (\sim 70\%)$$

Reactions contributing to ¹¹B

20
Ne 16 O
 24 Mg $\downarrow \downarrow \downarrow ^{14}$ N
 28 Si $\downarrow \qquad 11$ B

1-step channels

Weighted by CR abundances

4. XS wanted: main reaction contributing to B

Which X-section channels should be measured with high precision?

Weighted by CR abundances

4. XS wanted: ranking the channels

Ranking of 1- and 2-step channels

[Set $\sigma_{(P \to F)} = 0$ for all XS but for reactions in channel, propagate, sort]

	Energy	10 GeV/nuc				
	1 step	80.6%		_	To reach 3% precision	
	2 steps	15.9% 3.5%			on B flux @10 GeV	
	>2 steps					
		$^{11}{\rm B} \leftarrow ^{12}{\rm C}$	32.4%	<u> </u>		
AMESONE 16 O 15N 14N 150 SO	>1%	$^{11}\text{B} \leftarrow ^{16}\text{O}$	18.8%			
		$^{10}{\rm B} \leftarrow ^{12}{\rm C}$	10.4%			
		$^{10}{\rm B} \leftarrow ^{16}{\rm O}$	9.0%		N. 1. 00/	
		$^{10}{\rm B} \leftarrow ^{11}{\rm B} \leftarrow ^{12}{\rm C}$	2.3%			
		$^{11}\text{B} \leftarrow^{24}\text{Mg}$	1.8%			
Surgio 7 1 1 1 S.		$^{11}\text{B} \leftarrow ^{12}\text{C} \leftarrow ^{16}\text{O}$	1.7%	87%	Need a 2% precision on	
is x		$^{11}\text{B} \leftarrow ^{15}\text{N} \leftarrow ^{16}\text{O}$	1.6%		~ 10 reactions	
is the state of th		$^{11}\mathrm{B}\leftarrow^{14}\mathrm{N}$	1.5%	1		
<u>D</u>		$^{11}\mathrm{B}\leftarrow^{28}\mathrm{Si}$	1.4%	1		
		$^{11}\text{B} \leftarrow^{20}\text{Ne}$	1.4%			
		$^{10}\text{B} \leftarrow ^{11}\text{B} \leftarrow ^{16}\text{O}$	1.3%			
		$^{10}{ m Be}$ decay	3.4%			
		# of reactions	Total	_		
	[0.1%, 1%]	28	8.8%)	and 10% precision	
	[0.01%, 0.1%]	90	3.5%	13%	on the rest	
	< 0.01%	277	0.7%	J	on the rest	
				_		

[presented @ XSCRC2017 - https://indico.cern.ch/event/563277/]

→ But does not allow to rank properly XS

4. XS wanted: ranking the individual reactions (1)

Ranking of individual XS

[Set $\sigma_{(P+T \to F)} = 0$ one at a time, propagate, sort]

Several targets 'T' ISM = 90%H + 10%He

→ But missing short-lived nuclei

N.B.: in the Galaxy, τ_{esc} ~20 Myr, 'no' short-lived nuclei

<u>Contributi</u>	ons f	or B at 10 Ge	V/n
secondary	=	84.7%	
primary	=	0%	
radioactive	=	15.3%	
Sorted XS		Involved	XS[mb]
$\sigma(^{12}C+H \rightarrow ^{11}B)$		37.9%	56.8
$\sigma(^{16}O+H \rightarrow ^{11}B)$		19.9%	27.3
$\sigma(^{12}C+H \rightarrow ^{10}B)$		10.3%	15.4
$\sigma(^{16}O+H \rightarrow ^{10}B)$		8.1%	11.0
$\sigma(^{12}C + He \rightarrow ^{11}B)$		5.4%	73.2
$\sigma(^{11}B+H\rightarrow^{10}B)$		4.4%	38.9
$\sigma(^{16}O+H \rightarrow ^{12}C)$		3.3%	35.6
$\sigma(^{16}O + He \rightarrow ^{11}B)$		3.0%	36.6
$\sigma(^{16}O+H \rightarrow ^{13}C)$		2.6%	49.7
$\sigma(^{14}N+H \rightarrow ^{11}B)$		2.6%	29.2
$\sigma(^{13}C+H \rightarrow ^{11}B)$		2.2%	31.7
$\sigma(^{20}\text{Ne+H}\rightarrow^{11}\text{B})$		1.8%	19.3
$\sigma(^{12}C + He \rightarrow ^{10}B)$		1.5%	19.8
$\sigma(^{16}O + He \rightarrow ^{10}B)$		1.2%	14.7
$\sigma(^{24}\text{Mg+H}\rightarrow^{11}\text{B})$		1.1%	10.5

4. XS wanted: ranking the individual reactions (2)

Ranking of individual XS (with short-lived nuclei)

[Set $\sigma_{(P+T\to F)} = 0$ one at a time, propagate, sort]

Separate short-lived (ghost) nuclei
$$\sigma_{CR}^{P+T \to X} = \sigma_{Direct}^{P+T \to X} + \sum_{i} Br_{i} \sigma_{Ghost}^{P+T \to Xi(\to X)}$$

→ Exactly what we need!

N.B.: flight time between target/detector determines which XS is measured (direct or cumulative of some sort)

Contributions (with ghosts) for B at 10 GeV/n secondary 84.7% primary 0%radioactive 15.3% Involved Sorted XS XS[mb] $\sigma(^{12}C+H \rightarrow ^{11}B)$ 30.0 20.0% $\sigma(^{12}C + H \rightarrow ^{11}C^{[20.4m \rightarrow 11B]} 17.9\%$ 26.8 $\sigma(^{16}O+H \rightarrow ^{11}B)$ 27.3 19.9% $\sigma(^{12}C+H \rightarrow ^{10}B)$ 8.3% 12 3 $\sigma(^{16}O+H\rightarrow^{10}B)$ 8.1% 11.0 $\sigma(^{11}B+H\rightarrow^{10}B)$ 4 4% 38.9 $\sigma(^{16}O+H\rightarrow^{12}C)$ 3.0% 32.3 $\sigma(^{16}O+He\rightarrow^{11}B)$ 3.0% 36.6 $\sigma(^{12}C+He\rightarrow^{11}B)$ 2.9% 38.6 $\sigma(^{12}C + He \rightarrow ^{11}C^{[20.4m \rightarrow 11B]} \quad 2.6\%$ 34.6 $\sigma(^{14}N+H \rightarrow ^{11}B)$ 2.6% 29.2 $\sigma(^{12}C+H \rightarrow ^{10}C^{[19.3s\rightarrow 10B]}$ 2.1% 3.1 $\sigma(^{13}C+H \rightarrow ^{11}B)$ 1.5% 22 2 $\sigma(^{16}O + H \rightarrow ^{13}O^{[8.6ms \rightarrow 13C]} \quad 1.4\%$ 30.5 $\sigma(^{16}O + He \rightarrow ^{10}B)$ 1.2% 14.7

4. XS wanted: content of the paper

- → Ranking lists
 - for Li, Be, B, C (next AMS-02 fluxes), Z=1-30 ranking in a 2nd analysis
 - scatter on % and σ (XS datasets) to calculate conservative beam times
- → E-dependent XS plots for all important reactions (comparison purpose):
 - parametrization used
 - compilation/selection of data (I. Moskalenko)
 - systematic comparison from MNCP6 prediction (L. Kerby)
- → Robustness of ranking:
 - ranking depends on E (but do not change main contributors)
 - using \neq XS files
 - using \neq lists of ghosts
 - using \neq propagation parameters

- 1. Introduction: Galactic cosmic-rays (GCR)
- 2. A quick tour of AMS-02 recent results
- 3. Nuclear XS: a limiting factor to go further
- 4. XS wanted! A roadmap for NA61
- 5. Conclusions

5. Conclusions

Take home message

- → AMS-02 results are changing the field of CR physics
- → 1G\$ game-changing data cannot be exploited because of GeV nuclear physics
- → Timely win-win opportunity to help each other (HE physics community)

Wish list for LiBeB production

- → ¹²C and ¹⁶O projectiles provide most of the desired reactions (high priority)
- → If possible all fragments should be measured (not to miss any possible contribution, to decrease the CR overall uncertainty, to improve models)
- → H and He targets desired
- \rightarrow Measurements from 100 MeV/n to TeV/n to track E dependence
- $\rightarrow \sigma_{tot}^{Li,Be,B,C,O}$ required with high accuracy $(\sigma_{frag}^{P+T->F}$ normalised to $\sigma_{tot})$

Discussion

- At what energies should we provide the ranking (10 GeV/n)?
- What are NA61/Shine capabilities in terms of
 - beam/secondary beam (and purity) and energy
 - target, fragment isotopic ID?
- Should we provide more numbers, more detail wish-list for specific goal to reach?

→ We would be delighted to help you make it happen