Status of the NICA project and prospects for the study of multi-strangeness and charm in p+p and A+A collisions

V. Kolesnikov, A.Zinchenko (JINR)

On behalf of the NICA-MPD

Outline

- □ Introduction
- □ Progress in the NICA project realization
 - accelerator: construction status
 - detectors @ NICA : preparation for mass-production
- Multistrangeness at the MPD detector: performance study
- □ Charmonium production in p+p at NICA-MPD: feasibility
- Summary

Research programs @ NICA SPD **QCD** under extreme conditions (Detector) **Spin physics Accelerator physics Applied research** E-cooling MPD BM@N (Detector) (Detector) Collider Extracted beam Energy: \s_{NN}=4-11 GeV (Au,collider), up to 26 GeV (p+p), E/A=2-6 GeV (fixed target), **Beams:** from p to Au. L~10²⁷ cm⁻² c⁻¹ (Au), ~10³² cm⁻² c⁻¹ (p,d) **NICA** Temperature 7 (GeV)
0.0 S = 0 & Q/B = 0.4HADES **QCD** matter at NICA: nteraction STAR BES **Highest net baryon density (CM energy 4-11A GeV)** NA-61/SHINE **Energy range brackets onset of deconfinement** 0.05 Hadronic . Complementary to the RHIC/BES, FAIR, energy region of max. baryonic density and CERN experimental programs Collision energy $\sqrt{S_{MN}}$ [GeV] 0.12 Not begreen density a

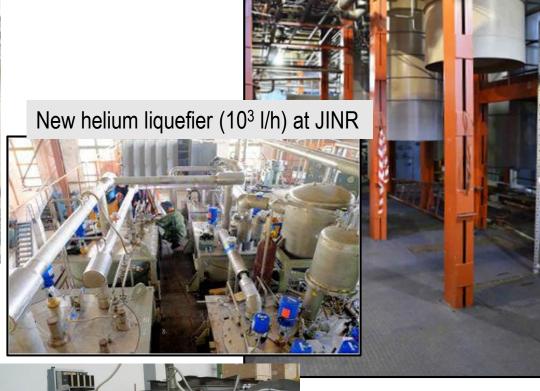
Nuclotron-based Ion Collider fAcility: Structure and Operation Regimes

	Nuclotron be	eam intensity (par	ticle per cycle)	ac HILac KRION
Beam	Current	Ion source type	at NICA	ac LU-20
р	3·10 ¹⁰	Duoplasmotron	5·10 ¹²	sources
d	3·10 ¹⁰	,,	5·10 ¹²	—
⁴ He	8·10 ⁸	,,	1·10 ¹²	
d↑	2·10 ⁸	SPI	1·10 ¹⁰	<u> Pixed Target Area</u>
⁷ Li	8·10 ⁸	Laser	5·10 ¹¹	_ →
11,10 B	1.109,8	,,		
12 C	1·10 ⁹	,,	2·10 ¹¹	
²⁴ Mg	2·10 ⁷	,,		IP-2
¹⁴ N	1·10 ⁷	ESIS ("Krion-6T")	5·10 ¹⁰	
⁴⁰ Ar	1·10 ⁹	,,	2·10 ¹¹	SC collider rings
⁵⁶ Fe	2·10 ⁶	,,	1·10 ¹⁰	22 injection cycles bunches per ring
⁸⁴ Kr	1.104	,,	2·10 ⁹	
¹²⁴ Xe	1.104	,,	2·10 ⁹	IP-1
¹⁹⁷ Au	-	,,	2·10 ⁹	

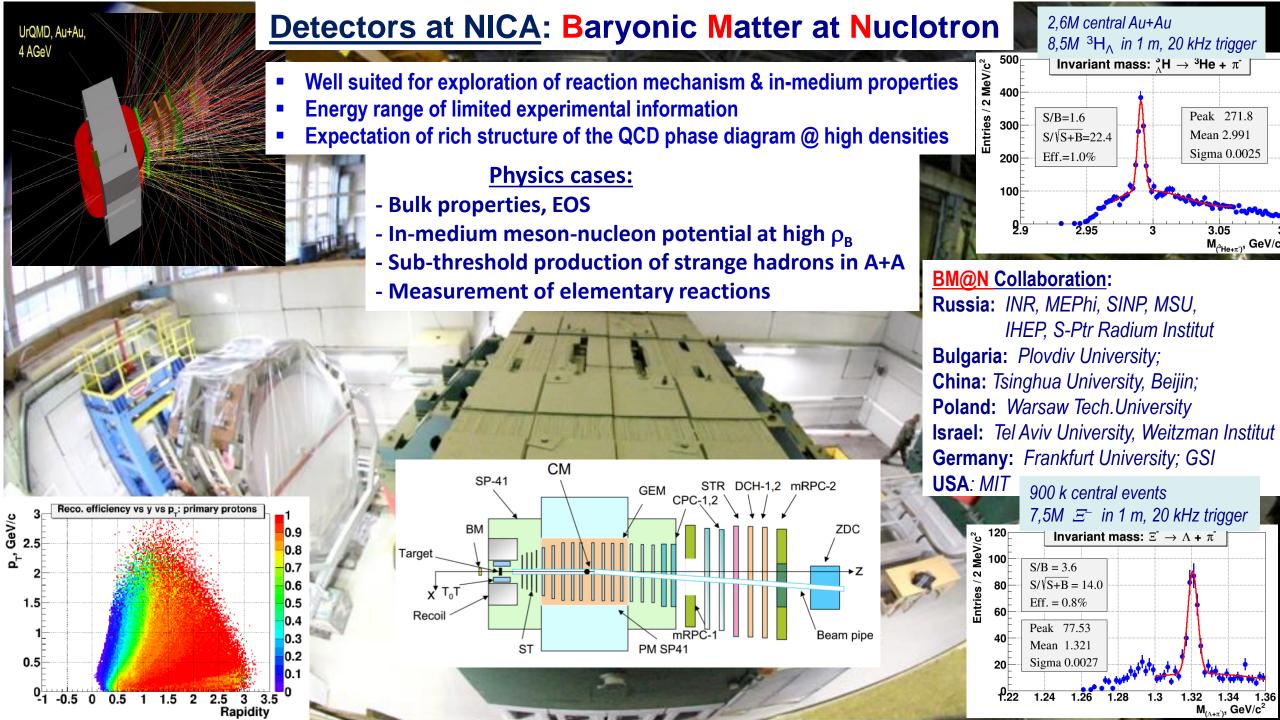
NICA progress (accelerator facility)

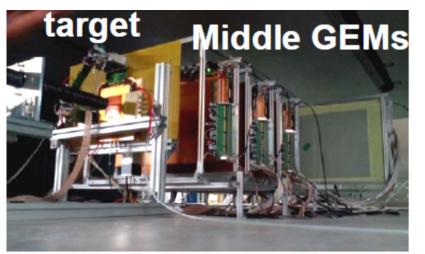
→ Infrastructure developments: civil construction, service systems upgrade (water cooling, cryogenics, electric power, etc.)

→ Accelerator elements construction



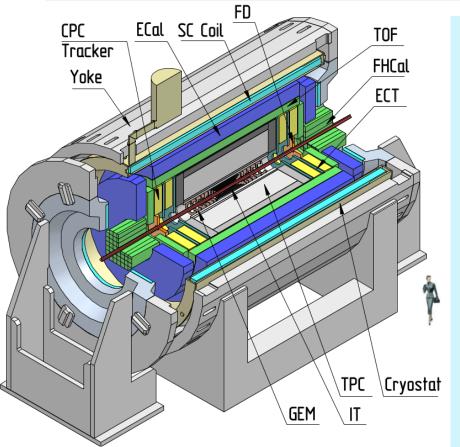
70% of reinforced concrete and piled works done


Electron cooling system for the Booster (assembled, under tuning)


Heavy ion source: Krion-6T ESIS (in operation since 2015)

SC Magnets for the NICA Booster, Collider & SIS-100/FAIR (workshop at VBLHEP JINR)

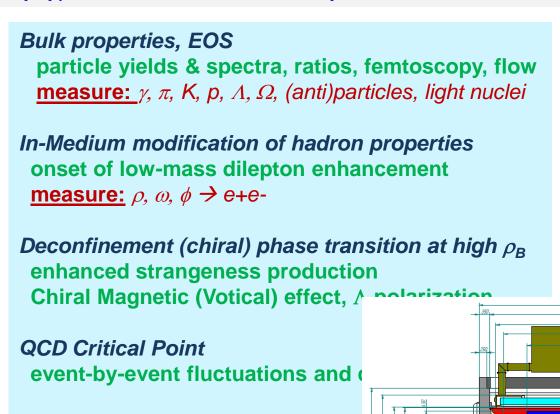
BM@N status and data taking plans


year	2016	2017 FebMar.	2017 NovDec.	2019	2020 +
beam	d ()	C, Ar	Kr	Au	Au, p
maximum intensity, Hz	1M	1M	1M	1M	10M
trig. rate, Hz	10k	10k	20 k	20k	50k
central tracker	6 GEM half pl.	8 GEM half pl.	10 GEM half pl.	8 GEM full pl.	12 GEM or 8+2Si
expiment status	techn. run	techn. run	commis.& physics run	physics stage 1	physics stage 2

ZDC

MPD at NICA: design, tasks and observables

Experimental strategy: measure a large variety of signals systematically changing collision parameters (energy, centrality, system size). Reference data (i.e. p+p) will be taken in the same experimental conditions.

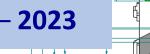

Magnet: 0.5 T superconductor

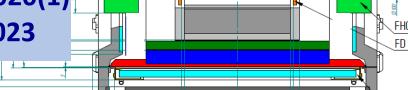
Tracking: TPC, ECT, IT

ParticleID: TOF, ECAL, TPC

T0, Triggering: FFD

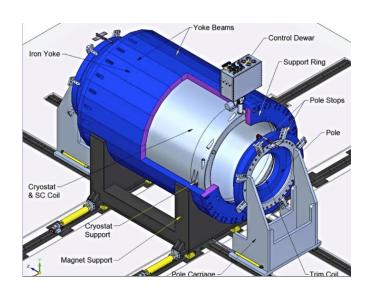
Centrality, Event plane: FHCAL


Strangeness in nuclear matter hypernuclei, exotica


I stage (barrel)

upgraded (IT + endcaps)

- 2023



ECal

TPC

Cryostat

MPD magnet: construction status

MPD Solenoid production stages (AGS superconductors, Genova, Italy)

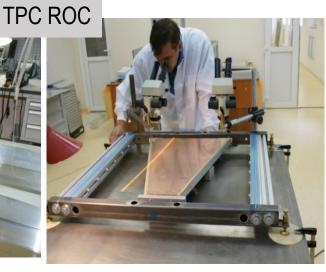
Manufacturing Jan. 2016-Aug. 2018

Final Solenoid tests by AGS Jun. 2018

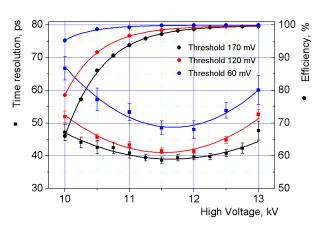
Packaging and Transportation Apr. 2018-Oct. 2018
Assembly at JINR, tests Oct. 2018-Apr. 2019

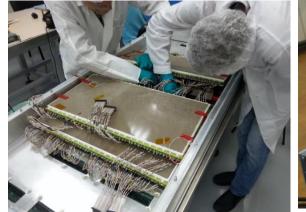
Magnet yoke (VHM, Vitkovice, Cech Rep.) – 80% ready, control assembling in Oct. 2017

Aluminum support cylinder blanks for SC coil during transportation



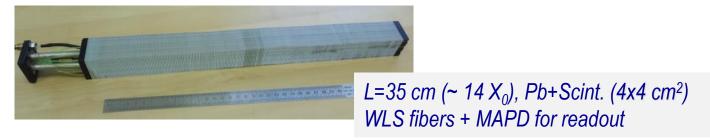
MPD tracker TPC: under construction

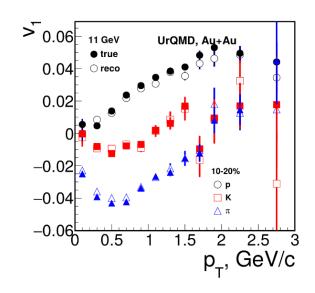


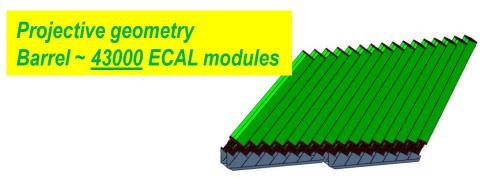


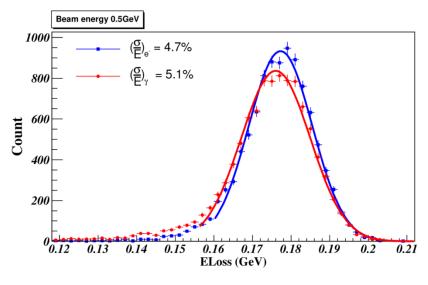
MRPC TOF: preparation to mass-production

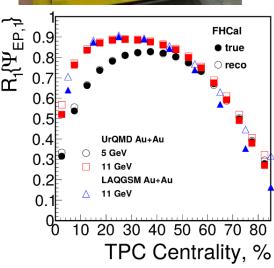
(material ordering, equipment installation, personnel training)




MPD Calorimetry: ECAL and FHCAL

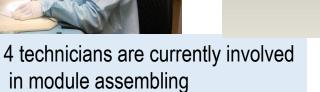

FHCAL calorimeter for centrality & event plane determination




Transverse granularity allows to measure:

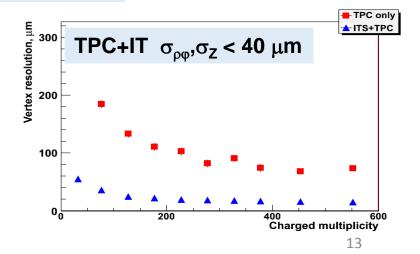
the reaction plane with the accuracy ~ 30°

2<|η|<5


MPD after 2023: Inner Tracker System (status 2017)

Site for module assembly: the main room (90m²) is class 7 ISO

- Site for module assembling
- Ladder frames construction
- QA testing of sensors
- Mockuping
- Simulation: design and physics



#	R0	Active	N of	N of chips	active	number of
layer	mm	I, mm	staves	/ layer	area, cm2	pixel cells
1	24,4	542,4	12	216	889,9	113 246 208
2	42,0	542,4	22	264	1 087,7	138 412 032
3	60,0	542,4	32	384	1 582,1	201 326 592
4	107,	1477,5	12	1176	4 845,1	616 562 688
5	156,5	1477,5	18	1764	7 267,7	924 844 032
6	206,5	1477,5	24	2352	9 690,2	1 233 125 376
Total:				6156	25 362,7	3 227 516 928

Quality assurance of the sensors: sophisticated optical and electrical methods established

400 sensors are already ordered and arrived

Ladder assembly device

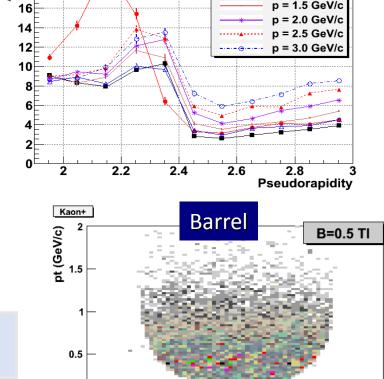
MPD beyond 2023: EndCap Tracker

 $\Delta p / p vs \eta$ for pions

- - 2x60 straw layers1.3<|η|<2.2 72000 straw tubes 4 mm x 60 cm

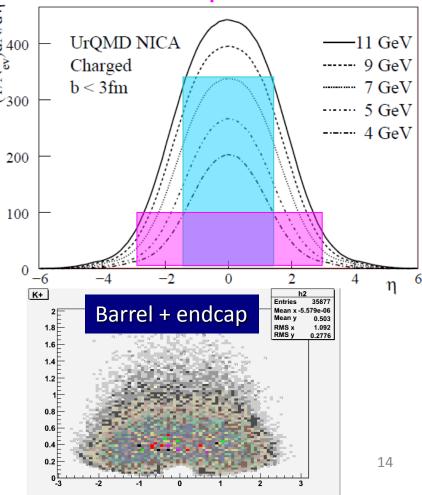
- A new technology developed to build straw detectors as multi-wheel structures
- ECT full size prototype : max. deviation $\Delta R < 300$ mm for a R=1.1 m wheel

rapiditv

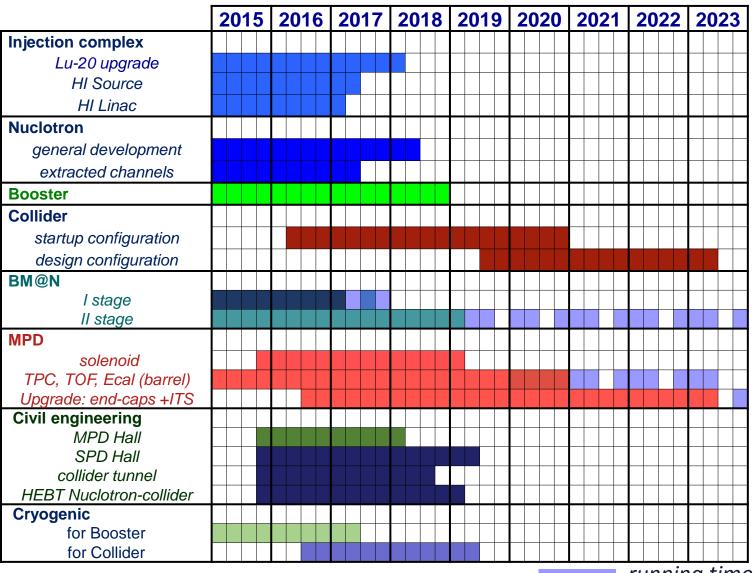

p = 0.2 GeV/c

p = 0.5 GeV/c

= 1.0 GeV/c


TPC+ECT+GEM tracking up to η =3

_ d 18



Barrel: ~60% for charged (σ_{π} ~1.3)

Barrel+endcap: > 90%

NICA experimental strategy in 2021-2023

Collider: energy and system size scan from 7 to 11(13,25) GeV in steps of 1-2

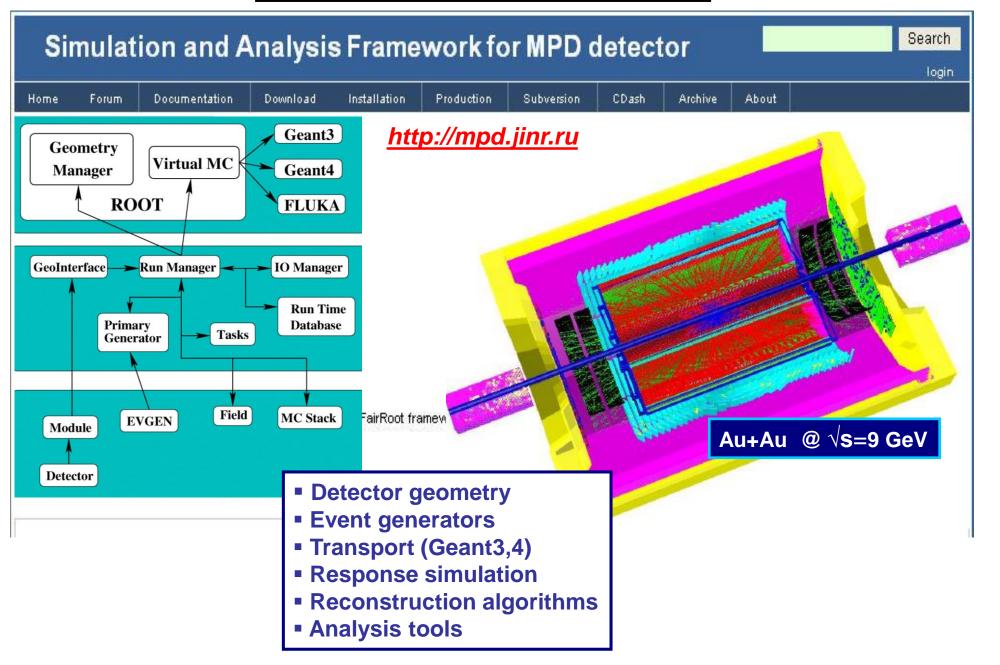
Beam	CM Energy, AGeV	L 2021-23, cm ⁻² c ⁻¹	L >2023, cm ⁻² s ⁻¹
Heavy ions (Au)	11	11 5 · 10 ²⁵	
Intermediate (Z/A~0.45)	13	3·10 ²⁶	10 ²⁹
р	25	~10 ²⁹	10 ³²

Limitations by the accelerator:

- lower luminosity (w/o electron cooling for the collider)
- extra reduction by 40% because of a larger interaction region (beam diamond)

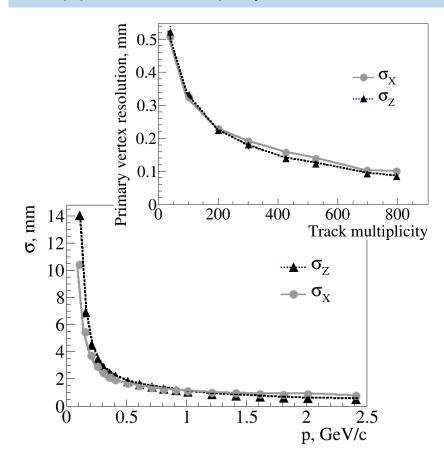
Detector constrains:

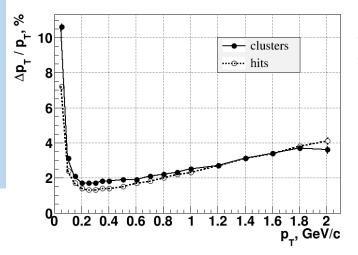
- **TPC** tracking: $|\eta| < 1.8$ (Npoints>10)
- **TOF & ECAL** coverage: $|\eta| < 1.5$
- **PID**: combined (dE/dx+TOF+ECAL) | η |<1.5, 0.1<pT<4 GeV/c, limited in 1.5 < | η | < 1.8 (only dE/dx)
- FHCAL coverage: 2.2<| η|<4.8
- FD inside the TPC inner pipe
- NO endcaps and vertex detector

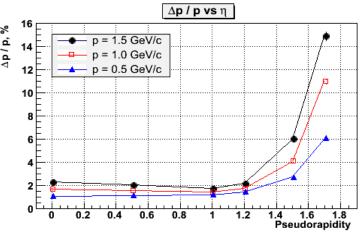

Particle yields in Au+Au collisions @ Vs_{NN} = 8 GeV (central collisions)

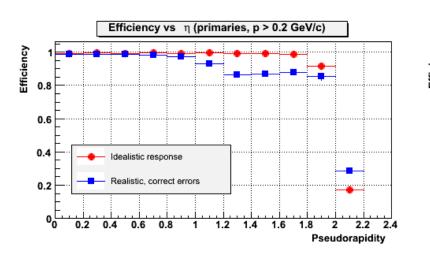
<u>Stage'1 (2021-23) one week of running</u> at $L = 5 \cdot 10^{25} \text{cm}^{-2} \text{s}^{-1}$ (duty factor = 0.5)

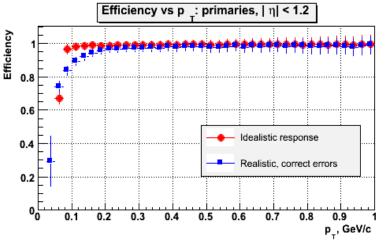
Particle	Multiplicity	Decay mode	BR	*Efficiency %	Yield /1 w
$\pi^{\scriptscriptstyle +}$	293			61	7.7 · 10 ⁸
K ⁺	59			50	1.5 · 10 ⁸
р	140			60	4.2 · 10 ⁸
Λ	~35	p +π ⁻	64%	10%	2 · 10 ⁷
王-	~2	$\Lambda + \pi^{-}$	~100%	2.5%	1.5 · 10 ⁵
ρ	31	e+e-	4.7 · 10 ⁻⁵	35	2.5 · 10 ³
ω	20	e+e-	7.1 · 10 -5	35	2.5 · 10 ³
φ	2.6	e+e-	3 · 10-4	5	2.0 · 10 ²
Ω	0.14	Λ+ K	0.68	1	1.0 · 10 ⁴

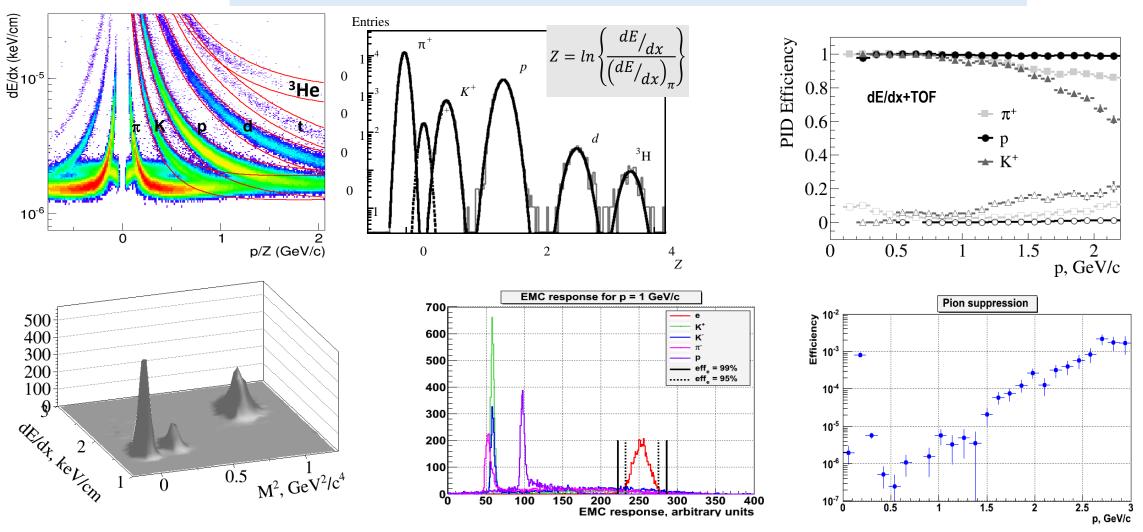

^{*}Efficiency includes the MPD acceptance, realistic tracking and particle ID. Particle Yields from experimental data (NA49), statistical and HSD models.


MC simulation - MPDRoot

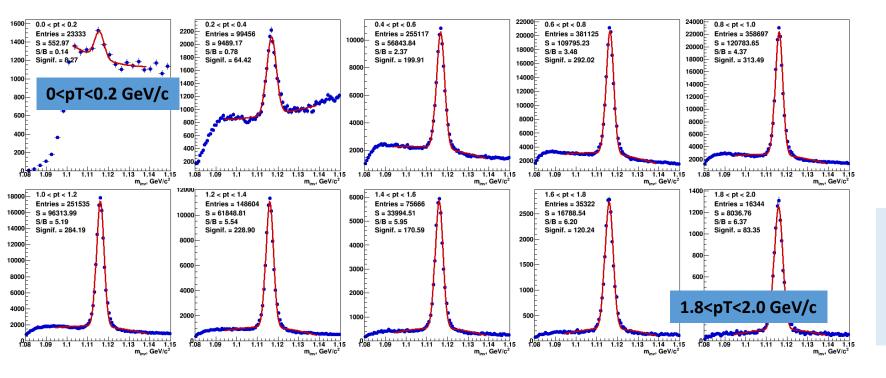


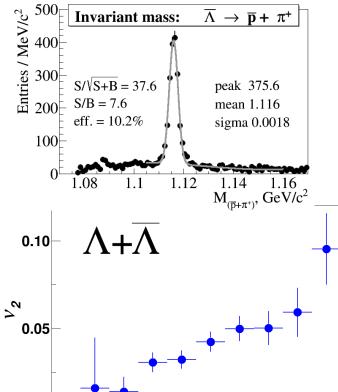

MPD tracking performance (TPC)


- Track reconstruction Kalman filtering technique
- Tracking down to η = 1.8(1.6) with Npoints>10(20)
- Primary & secondary vertexing with Kalman filtering formalism (sub-cm precision w/o vertex detector)
- MPD tracking efficiency above 85% within |η|<1.8
 && p_t>0.15 GeV/c
- ∆p/p < 3% at midrapidity



MPD Particle Identification


- Hadron (π,K,p) identification up to 3 GeV/c, midrapidity nuclei PID
- Electron PID with hadron suppression up to 10⁵
- Secondary vertex reconstruction hyperons & hypernuclei @ midrapidity



dcap paths dcayo T

MPD performance: strangeness (Lambda flow)

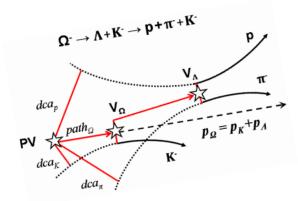
- Realistic tracking and PID
- Selection criteria dictated by the decay topology
- Optimal cut values (i.e. DCA at the primary vertex, two-track separation, etc.) found from multidimentional scan over the set of criteria with a requirement to maximize the significance
- Hyperons studied up to pT=2 GeV/c, low-pT part of the spectra needs further optimization of the selection criteria

Min. bias Au+Au @ 11A GeV (UrQMD),
 TPC+TOF barrel

1.0

p_, GeV/c

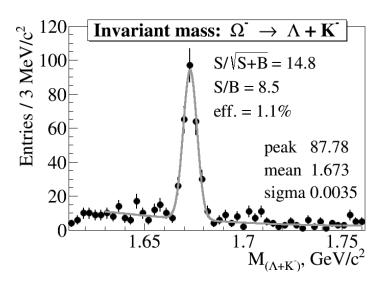
1.5


2.0

- Secondary vertex reconstruction
- Event plane from TPC tracks

0.5


0.0


MPD performance: multi-strangeness (Stage1)

- ~ 5 · 10 ⁵ central Au+Au at 9 GeV
- Λ- candidates in the invariant mass window ±3σ around the peak combined with kaons
- Topological cuts optimized to maximize significance
- Constrained at low pT (pT>0.2 GeV/c)

- Stage'1 MPD configuration (TPC+TOF)
- Selection criteria dictated by the decay topology

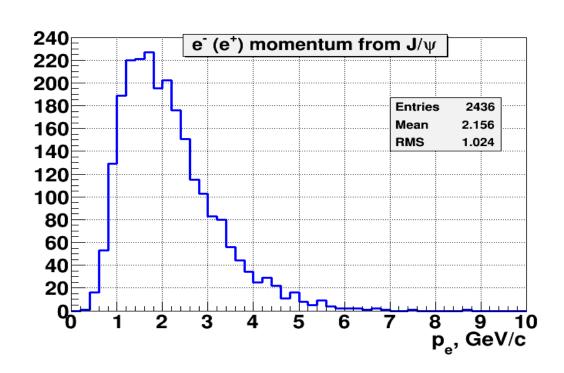
Yields for 10 weeks of running

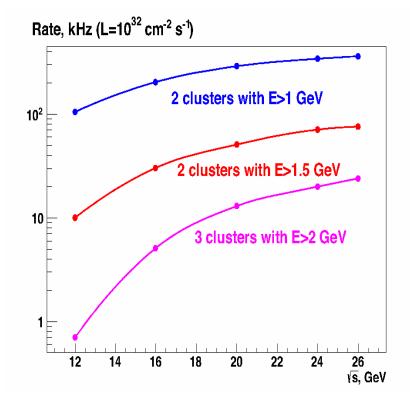
Particle	Λ	anti-∧	Ξ-	anti-⊞⁺	Ω -	anti–Ω⁺
Yield	3 · 10 ⁸	3.5 · 10 ⁶	1.5 · 10 ⁶	8.0 · 10 ⁴	7 · 10 ⁴	1.5 · 10 ⁴

Comments (concerning charm at NICA)

- Primarily, the charm production was not in the list of the NICA physics cases
- Low X-section (close to the threshold for the open charm) and moderate event rate at the collider yields a statistics of about 10⁴ (10³) per 10 weeks of data taking for open (charmonium) in A+A at NICA
- Construction of an expensive vertex detector needed for such a study had a second priority for the NICA-MPD experiment (lack of experience, finance and man power at JINR), No realistic feasibility for charm
- Recently, this situation has changed (progress in technology, support from theory, plus stable financing situation). It is too late to include charm to the Stage'1 NICA program (2021-23), if, however, the potential of such studies at NICA energies is high there is a possibility to reconsider the priorities of the NICA physics cases beyond 2023.
- The main goal of our participation in the Workshop is twofold: 1) to present current status of the NICA project and 2) hear about perspectives for the study of charm production in HIC at CM energies from 4 to 17 GeV (dense baryonic matter)

Particle yields in Au+Au collisions @ $\sqrt{s_{NN}}$ = 8 GeV (central collisions)

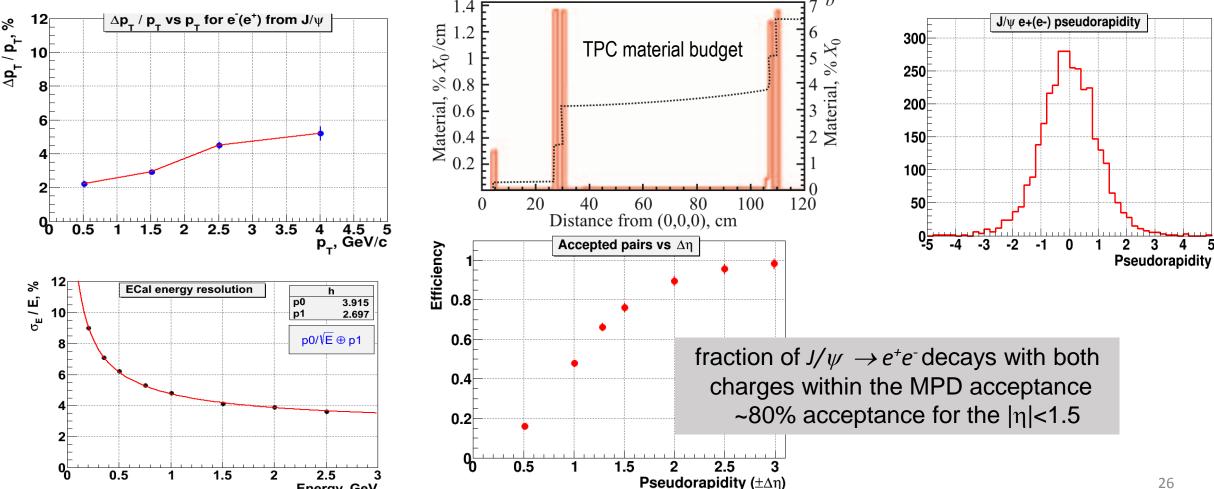

Stage'2 (>2023) Expectations for 10 weeks of NICA running at $L = 10^{27} \text{cm}^{-2} \text{s}^{-1}$ (duty factor = 0.5)


Particle	Multiplicity	Decay mode	BR	*Efficiency %	Yield/10 w
$\pi^{\scriptscriptstyle +}$	293			61	2.6 . 10 ¹¹
K ⁺	59			50	4.3 . 10 ¹⁰
р	140			60	1.2 . 10 ¹¹
ρ	31	e+e-	4.7 · 10 ⁻⁵	35	7.3 . 10 ⁵
ω	20	e+e-	7.1 · 10 -5	35	7.2 . 10 ⁵
φ	2.6	e+e-	3 · 10-4	15	1.7.10 ⁵
Ω	0.14	ΛK	0.68	1	1.5 · 10 ⁶
D_0	2 · 10 ⁻³	K ⁺ π ⁻	0.038	20	2.2.104
J/ψ	8 · 10 ⁻⁵	e+e-	0.06	15	10 ³

^{*}Efficiency includes the MPD acceptance, realistic tracking and particle ID. Particle Yields from experimental data (NA49), statistical and HSD models.

MPD potential for study charmonium-like states in p+p(A) collisions at NICA

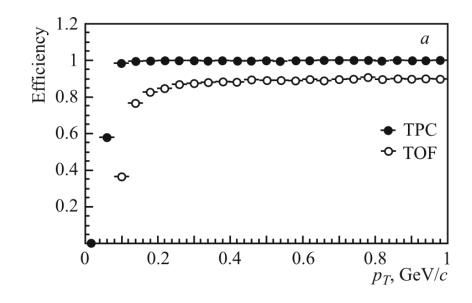
- MPD detector has a potential to extend its physics program beyond the heavy-ion scope by studying heavy charmed objects via their decays to electrons, hadrons or photons
- At higher luminosity (p+p or light ions of Z/A~0.5) a high level trigger on high-pT leptons (ECAL) to enhance interesting event rates can be utilized (not exceeding 30kHz level)

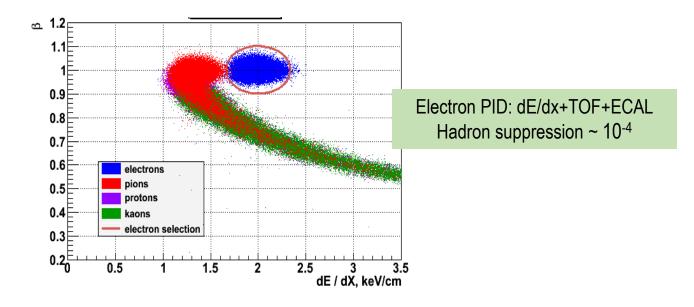


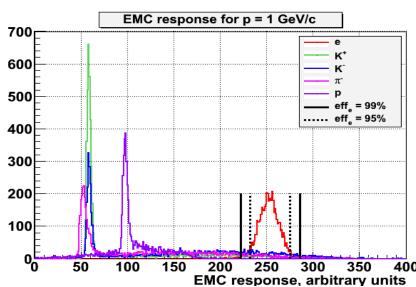
J/ψ in p+p collisions at NICA : feasibility study

p+p at 25 GeV (Pythia8), event mixing

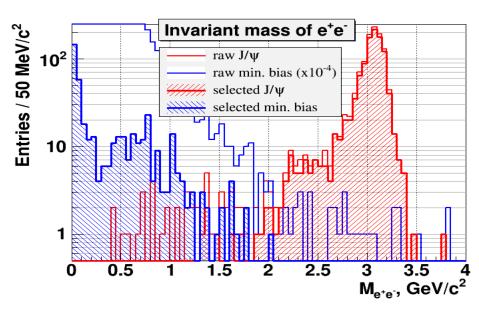
Energy, GeV

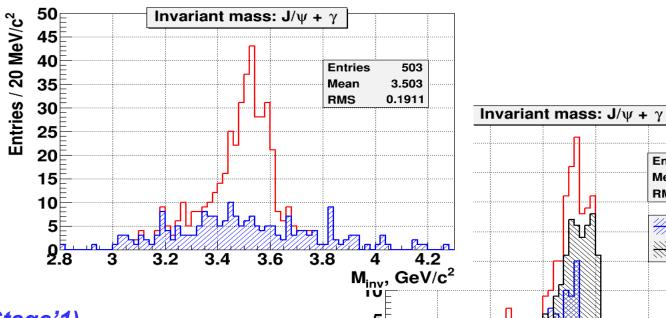

- 10 weeks of running time: $L = 10^{29} \text{ cm}^{-2} \text{c}^{-1}$ (Stage'1) $L_{int} = 604.8 \text{ nb}^{-1}$
- Decay channel $J/\psi \rightarrow e^+e^-$ (branching ratio ~6%)
- MPD detector TPC+TOF+ECAL ($|\eta|$ <1.5), w/o vertex detector
- MpdRoot: Geant3, realistic track and vertex reconstruction

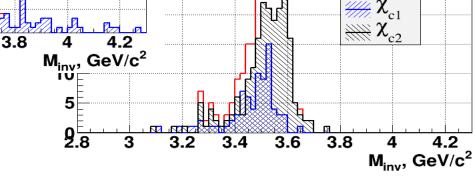



J/ψ in p+p at NICA : analysis details

Cuts at Stage'1 MPD setup:


- Number of space points
- DCA to the primary vertex
- Cuts for removing conversion pairs
- Kinematical (low-pT) cut (pT>0.5 GeV/c)





Results: Invariant mass e⁻ + e⁺ + n_γ

Estimates for the NIAC-MPD (10 weeks Stage'1)

J/ψ – x-section from Pythia 41.5 nb (factor ~2 below experiment)

Statistics: $N_{J/\psi} = L_{int} \times \sigma_{J/\psi} \times Br_{J/\psi} \rightarrow e+e-\times Eff. \Delta \eta < 1.5 =$

 $604.8 \times 41.5 \times 0.06 \times 0.8 = 1205$ (x 10..100 after 2023)

 $\sigma_{\gamma c1}$ from X-section from Pythia6 13.7 nb

Statistics: $N_{\chi c1} = L_{int} \cdot \sigma_{\chi c1} \cdot Br_{\chi c1 \rightarrow \gamma + J/\psi} \cdot Eff._{\Delta \eta = \pm 1.5} \cdot Br_{J/\psi \rightarrow e + e} \cdot Eff._{\Delta \eta = \pm 1.5} = 604.8 \cdot 13.7 \cdot 0.27 \cdot 0.9 \cdot 0.06 \cdot 0.8 = 97$

 $\sigma_{\chi c2}$ X-section from Pythia6 66.6 nb

Statistics: $N_{\chi c2} = L_{int} \cdot \sigma_{\chi c2} \cdot Br_{\chi c2 \to \gamma J/\psi} \cdot Eff._{\Delta \eta = \pm 1.5} \cdot Br_{J/\psi \to e+e-} \cdot Eff._{\Delta \eta = \pm 1.5} = 604.8 \cdot 66.6 \cdot 0.14 \cdot 0.9 \cdot 0.06 \cdot 0.8 = 244$

Stage'1 @ NICA (p+p):

An extra suppression factor of 10-50 is needed (stronger cuts, vertex detector) to make charmonium feasible

Entries

3.502 0.09899

Summary

- Construction of the NICA complex is well in progress (civil construction, accelerator components, service systems)
- Substantial progress in the construction of the detectors:
 - BM&N experiment commissioning runs started
 - MPD design has optimized for Day'1 physics, preparation for mass-production ongoing
- Stage'1 period of the NICA-MPD (until 2023) up to S=-2 strangeness,
 No charm before NICA accelerator upgrade and MPD completion
- NICA-MPD potential for the charm at the Stage'2 is under investigation.
 No promising results w/o vertex detector, IT realistic simulation is under development