Charm and Multi-Strange Hyperons with the CBM Experiment

Volker Friese
GSI Darmstadt

on behalf of the CBM Collaboration

FAIR Accelerator Complex

FAIR Accelerator Complex and CBM

CBM: Experiment Systems

CBM Punchline: Rates

SIS-100 and SIS-300

- SIS-100 and CBM are part of the FAIR Modularised Start Version (MSV)
- SIS-300 is not yet funded; timeline unsure
- we concentrate now on CBM@SIS-100
 - Au: 2A 11A GeV
 - Ni: 2A 15A GeV
 - p: up to 30 GeV
- staying open for SIS-300 as later upgrade

The Workhorse: Silicon Tracking System

- 8 tracking stations in dipole magnet: between 0.3 m and 1 m from target
- Aperture: $2.5^{\circ} < \Theta < 25^{\circ}$ (38°)
- Double-sided micro-strip sensors arranged in modules on low-mass, carbon-fiber supported ladders.
- 1,220 sensors (4 m²), 1.8 M channels
- Readout electronics at periphery
- Thermal enclosure, sensors at -5 °C
- CO₂ cooling (42 kW power dissipation)

STS Acceptance...

... and Performance

Track finding efficiency central Au+Au 10A GeV

Momentum resolution

Track reconstruction with Cellular Automaton and Kalman Filter

Hadron ID: Time-of-Flight Detector

- array of Resistive Plate Chambers (120 m²)
- resolution ≈ 60 ps
- high rate capability (- 25 kHz/cm²)
- located at z = 6 m (10 m) from the target

Precision Vertexing: Micro-Vertex Detector

- 4 layers of Monolithic Active Pixel Sensors
- located at z = 5 cm 20 cm
- pixel size 20 x 20 μm²
- resolution 4 μm
- low-mass: < 0.5 % X₀ per layer
- operated in vacuum
- rad. hardness 10¹³ n_{eq}/cm² / 3 MRad
- sec. vertex resolution ≈ 50 μm along beam axis

MIMOSA-26

Prototype station

Muon Detector

- active absorber system
 with tracking detectors
 (GEM/straw) sandwiched
 between absorber slices
- allows track following through the system

Charm in Heavy-Ion Collisions

- Was covered nicely in previous talks (Satz, Cassing)
- Important (if not decisive) probe of the created medium
 - that holds at all energies!
- Particular at lower energies (below top SPS): 50 100 150 200
 - N_{ccbar} << 1 -> no regeneration, "clean" probe
 - Softer J/psi, longer-lived fireball: charm has a chance to see the medium

Charm Cross Section

- For the interpretation of charmonium data, the total c-cbar production cross section is required: need to measure also open charm.
 - cave: near threshold, $N_{J/\psi} << N_D$ not necessarily true
- Charm cross section close to threshold is experimentally unknown below √s = 20 GeV even in elementary reactions (let alone A+A)!
- pQCD calculations also come with large uncertainties.

Charm at SIS-100

- The CBM charm programme is tailored for SIS-300 energies
- At SIS-100:
 - charmonium at top energy: Au+Au, 11A GeV (sub-threshold, extremely challenging)
 - Z/A = 0.5 (e.g., Ni+Ni) @ 15A GeV (slightly above threshold)
 - open and hidden charm in p+A up to 30 GeV (c-cbar cross section, cold matter effects)

central Au + Au, 10A GeV

Charm at SIS-100: Ni + Ni @ 15A GeV

D mesons: Interaction rate 0.1 MHz 260 $\overline{D^0}$ and 45 $\overline{D^0}$ in 2 weeks

Acceptance down to zero pt

Charmonium (muon channel): Interaction 1 MHz 3300 J/Ψ in 2 weeks

Strangeness

- One of the "classical" observables: strangeness enhancement / canonical suppression
- Strangeness yields from are well described by the statistical model: strong argument for phase transition (no hadronic mechanism to equilibrate e.g. Omega)
- Following this: measuring strange baryon abundances at lower energies.
 - Down to which collision energies does the hadron gas model hold?
- Model fits describe data at lower SPS and at AGS
 - But with a limited amount of particle species
 - Data on multi-strange baryons are scarce

Breakdown of strangeness thermalisation?

HADES result for Xi⁻ at SIS-18 (1.76A GeV): Xi⁻ yield is off by an order of magnitude from the statistical model.

N.b.: This is deep sub-threshold. Production through multi-step processes

$$\Lambda K \to \Xi \pi \quad \Lambda \Lambda \to \Xi^- p \quad \Xi K \to \Omega \pi$$

R. Holzmann, CBM Physics Workshop, April 2010

Strangeness: The "horn", again

- Statistical model: broad maximum at \approx 30A GeV (interplay of T and μ_h)
- No satisfactory description of the K/pi energy dependence, but
- Improvement when including high-mass resonances

A. Andronic, P. Braun-Munzinger und J. Stachel, Phys. Lett. B 673 (2009) 142

The need for data on multi-strange baryons

A long-lasting debate: pure hadronic description or signal of drastic change in matter properties? Data on multi-strange baryons will be decisive!

- "Onset" scenario: effect is due to increase in strangeness; sharp maximum at same location as
 K/pi; size of peak increases with strangeness content
- Hadron Gas Model: effect is due to net-baryon density; broad maximum; size of maximum decreases with strangeness content; position of maximum shifts

CBM Performance for Hyperons

Hyperons: Phase-Space Coverage

Hyperons: Expected Statistics

Au+Au 10 AGeV	Λ	Ξ-	Ω^-	Ω^+
decay channel	p π ⁻	$\pi^{\scriptscriptstyle{-}} p \pi^{\scriptscriptstyle{-}}$	$\mathrm{K}^{\text{-}}\mathrm{p}\pi^{\text{-}}$	$K^+ p \pi^+$
M _{UrQMD 3.3}	17.4	0.22	5.5E-3	6.7E-5
BR(%)	63.9	~100	67.8	67.8
total eff. (%)	25.7	8.5	5.4	2.3
$S/B_{2\sigma}$.3	17.8	1.0	~10
Reco yield/sec. ~ 1MHz	4.5M	20 k	280	1.5

Strange anti-baryons at FAIR/NICA energies

Microscopic models (including partonic production) predict the anti-hyperons to be very sensitive to partonic production mechanisms (hyperons much less)

CBM Performance: Anti-Hyperons

Sensitivity to Hypermatter

Comparison: Observables

Summary: What we can expect from CBM

Charm:

- D mesons and J/psi in Ni+Ni @ 15A GeV
- J/psi in Au+Au at 10A GeV
- Charm production in p+A up to 30 GeV
- With SIS-300: systematic charm measurements up to 35A (45A) GeV

Multi-strange hyperons:

- Excitation function of Xi and anti-Xi from 4A to 10A GeV
- Omega and anti-Omega at 8A and 10A GeV
- With SIS-300: extension of energy range to 35A / 45A GeV; coverage of maximal net-baryon density ("horn") region