Physics with HI Beams at J-PARC

Hideki Hamagaki

Institute for Innovative Science and Technology Nagasaki Institute of Applied Science

Outline: • Introduction. • HI acceleration at J-PARC • A TROIDAL Detector system • Strangeness and Hyper-nuclei • Summary and outlook

INTRODUCTION

2017/07/27

Goals of J-PARC HI Project

- Exploration of QCD phase structure at very dense regime
 - QCD phase structures (critical point & phase boundary) at high density regime are yet to be explored
- Study of hadron/nuclear properties relevant to neutron star core
 - Hypernuclei, strangelet, ...

Baryonic QCD Matter

 Large baryon stopping in HI collisions at small √s_{NN} (4~6GeV@J-PARC/AGS)

Presnted in the workshop on "NA61/SHINE Beyond 2020" at University of Geneva

Strangeness production at J-PARC

(K⁺, Λ, Ξ)/π ratio have maximum at √s_{NN}~5GeV
→ Strangeness fraction largest around J-PARC energy

2017/07/27

HI ACCELERATION AT J-PARC

Presnted in the workshop on "NA61/SHINE Beyond 2020" at University of Geneva

2017/07/27

J-PARC Proton Accelerator Scheme

J-PARC HI Accelerator Scheme

J-PARC-HI beam

- E_{lab} = 1-19 AGeV (√s_{NN} = 1.9-6.2 GeV) for ²³⁸U
- Beam intensity = 10¹¹ pps (interaction rate of 10⁸ Hz with a 0.1 % interaction target)
- 5 min run at J-PARC corresponds to 1 year at AGS

Expected Particle Yields

A TROIDAL DETECTOR SYSTEM

2017/07/27 Presnted in the works

Presnted in the workshop on "NA61/SHINE Beyond 2020" at University of Geneva

Production of Charmed Particles

CBM Physics Book,

W. Cassing, E. L. Bratkovskaya and A. Sibirtsev, Nucl. Phys. A 691 (2001) 753

- Open charm
 - Energy loss in hadronic/ partonic media

- Local equilibration
- J/ψ
 - Very complicated process beyond naïve suppression scenario
- J-PARC energies are close to production thresholds
 - D (5.07 AGeV) & J/ψ (4.77 AGeV)
 - A good playground to see subthreshold effects?

Low-mass Dileptons

No measurement at J-PARC energy region Maximum X-factor at J-PARC energies?

- Dielectron measurement
 - Main background: γ conversion at low mass
- Dimuon measurement
 - Main background: μ from p, K decays
 - Higher rate beam can be used
- Background from charm decay is small
- 3-orders higher statistics at J-PARC compared to CERES

Expected Dilepton Spectra

STRANGENESS & HYPERNUCLEI

2017/07/27

Presnted in the workshop on "NA61/SHINE Beyond 2020" at University of Geneva

Hypernuclear Production in HI Collisions

At Stopping Regime

- Participant region
 - Nuclear coalescence -> light hypernuclei
- Beam fragment region
 - Λ absorption in fragments
 - (π^+ , K⁺) interaction

• Measurements in the beam fragment region will be interesting

Advantage of HI Beams over Kaons

- Production of exotic hypernuclei
 - S = -3 Hypernuclei
 - Double hypernuclei
 - Neutron-rich/proton-rich hypernuclei, not accessible with Kaon beams
- Study of properties; lifetime & magnetic moment
 - Hypernuclei at beam rapidity
 - Difficult with meson beams, due to short decay length
 - Magnetic moment
 - Never succeeded!
 - Sensitive to hyperon wave function inside hypernucleus
 - Spin and angular momentum structure
 - Spin-dependent YN interaction

Hypernuclear spectrometer

- Experiment with full beam rate may be feasible
 - At 10^7 Hz interaction rate, trigger rate will be ~4.0x10³ Hz
- 1. Two-magnet setup; a sweeper magnet with strong field + a magnet for momentum analysis and spin precession
- 2. Weak decays of hypernucleus to π and a nucleus is measured by the TPC

SUMMARY AND OUTLOOK

Summary & Outlook

- HI acceleration at J-PARC is under serious consideration
- Revisit hot matter at very high baryon density, with capability of accumulating high-statistics data
- A TOROIDAL setup is under consideration
 - study of particle production with high precision in the central rapidity region, including open and close charms and low mass pairs
 - particle correlation ...
- A forward spectrometer system for hypernuclei (& strangelet)