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LONG BASELINE NEUTRINOS IN JAPAN
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LONG BASELINE NEUTRINOS IN JAPAN
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SYSTEMATIC ERRORS FOR T2K-11 AND HYPER-K
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Current T2K systematic errors

Systematic Error Type 1Re Neutrino Mode 1Re Antineutrino Mode

Far Detector Model

Final State/Secondary Interactions

Extrapolation from Near Detector

ve(bar)/v,(bar)

NC1y

Other

Total

> Current T2K systematic errors are at the ~6% level
» Need reduction to <5% for T2K-II and <3% for Hyper-K
> Need to avoid “unknown unknowns” particularly in cross section modeling

» Modeling neutrino-nucleus scattering at ~1 GeV is a challenging nuclear
physics problem! 3



THE E61 EXPERIMENT

~10x10x10 m3
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» E61 - proposed kiloton scale water Cherenkov detector where position can be moved to
make measurements at different off-axis angles

> Address critical neutrino-nucleus scattering uncertainties for T2ZK & Hyper-K
> Staged approach

> Phase-0: stationary detector near existing T2K near detectors

> Phase-1: detector at ~1 km from neutrino source, movable to 1-4° off-axis
> Have received stage 1 approval from the J-PARC PAC
> Recent merger of NuPRISM and TITUS collaboration to form single E61 collab.



E61 PHYSICS

> E61 will make measurements of critical neutrino-nucleus interaction processes for
T2K and Hyper-K

> Measurements on water with sample angular acceptance as far detector
> 4 key items for the future program:

> Probing energy dependence of neutrino interactions through measurements at
different off-axis angles

> Measuring the o(v,)/o(v,) and o(ve)/0(v,) cross section ratios
> Loading with Gd to study neutron production in neutrino nucleus scattering

> Measurement of intrinsic neutral current and electron (anti)neutrino backgrounds
for the long baseline program



MOTIVATION: ENERGY RECONSTRUCTION
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3 Multinucleon Feed-down on Oscillated Flux
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» QObserved spectra are smeared by nuclear effects - populate tails in particular
> Different fluxes in near and far detector

> Impact of nuclear effects on the far detector observed spectrum cannot be
directly measured in the near detector



MOTIVATION: ELECTRON NEUTRINO CROSS SECTION
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» QObserve mostly muon (anti)neutrino interactions in near detector
» CP violation is observed on electron (anti)neutrino interactions in far detector

> Sensitive to systematic errorson O, /O, , 0, /0
e 1] e 11

> Uncertainties can arise from:

Phys.Rev. D86 (2012) 053003
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FLUX UNCERTAINTIES IN E61

> As with all experiments probing neutrino interactions, E61 wants flux uncertainties
that are as small as possible

> Here I will discussion flux uncertainties in two types of analyses:
> Using off-axis dependence of flux to produce mono-energetic neutrino spectra
> Measuring the o(v.)/0(v,) in Phase-0 of the E61 experiment

> Caveat - all studies here use the T2K flux model based on tuning of hadronic
interactions using NA61/SHINE thin target data

> Expect reduction of errors with tuning based on replica target data



ADVANTAGE OF MULTIPLE OFF-AXIS ANGLE MEASUREMENTS
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ADVANTAGE OF MULTIPLE OFF-AXIS ANGLE MEASUREMENTS

4.0° Off-axis Flux -

-04

O:H““‘ | | | |
0 05 1 15 2 25 3 35

Spectra at at

each off-axis bin

T

Observed muon
kinematic
distributions

Muon pé&H0

.'--

E, (GeV)

x10"
35:““ R R R R AR
E 2.5° Off-axis Flux 1
30} ]
+1.0 |
07 ““““““““ 4 1 | .
0 05 1 15 2 25 3 35
E, (GeV)

1015
E’ ““““““““““““““““““““““““““ ]
S o5t 1.0° Off-axis Flux ]
s 1
< 20f E

-0.5
S

0 05 1 15 2 25 3 35

l E, (GeV)

--a A‘
9
20 le(T) T T ‘ T T T T ‘ L ‘ L ‘ T T T T ‘ T T T 7T +
L — Linear Combination ]
—— 1.7° Off-axis Flux
15~
—— Gaussian: Mean=0.9, RMS=0.11 GeV
10—
O=====T. . .. IR = o s i
3

; flux

Muon pé&0

-
I

i)
_|“‘ [
i :

Linear combinations reproduce the
: oscillated flux, and predict muon
kinematic distributions for the oscillated

»oo

Muon pé&eo l

L 3

l ..—u-—-—-w-

Linear Combination, 0.9 GeV Mean

>
)
26000W —— 1Ring u Event Spectrum ~ _{ &
= [ Absolute Flux Error
ll\u? —— Shape Flux Error 0
8 Statistical Error ‘
[54000* —— NEUTQE -4 9
—— NEUT Non-QE 0
2000 4 s
i 0
O | | ‘
0 1 2 3
E... (GeV)



LINEAR COMBINATION FOR MONO-ENERGETIC BEAM
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> Using prior knowledge of flux model from hadron production data, find coefficients
(left) as function of off-axis angle

> Adding off-axis fluxes with coefficients gives narrow spectrum (red on the right)

> To extract the correct coefficients, we need a precise prior flux model
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UNCERTAINTY FOR MONO-ENERGETIC ANALYSIS

Linear Combination, 0.9 GeV Mean

> i I I I I | I I I I | I I I T |

é) 6000+ —— 1 Ring u Event Spectrum  _|

% B Absolute Flux Error i

E B —— Shape Flux Error .

8 i Statistical Error .

[54000— — NEUTQE -
—— NEUT Non-QE

2000

E... (GeV)

> Simulate the reconstructed spectrum produced with linear coefficients from previous slide
> Propagate current T2K flux uncertainties
» Normalization error is ~20% (inflated from ~10% by linear combination analysis)

> Shape error is small (black error bars)

» Main goal of this analysis is to measure shape effects, but we can also benefit from reduced flux

errors to constrain the normalization uncertainty
11



ELECTRON NEUTRINO CROSS SECTION IN PHASE-0
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FLUX RATIO UNCERTAINTY
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v./v, Error at 83" OAA
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WHAT IS DRIVING THIS FLUX ERROR?
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CROSS SECTION ANALYSIS RESULTS

8 degrees off-axis

|_
- We have studied the 0(v.)/0(v,) measurement usinga  £450- . NC
* * . — — YV
full simulation and event reconstruction for Phase-0 Q400 —
350 v,
% Bl Signal v,
. . . 300
o Includes backgrounds from interactions in the ki B v background
+* 250

surrounding sand and detector

4e21 POT

A pure, high statistics sample of electron neutrino

candidates can be selected

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Reconstructed neutrino energy (MeV)

Signell - NC¥ ~ NCy - v 8C V\;(;ig Entering v Total Purity
SMOVIVAE 9656 | 1384 172 124 1216 648 13204 | 73.1%
GNOVIVAE 13068 | 2672 356 236 972 648 17956 | 73.8%
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SYSTEMATIC ERRORS IN CROSS-SECTION MEASUREMENT
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> [n this analysis, we have considered systematic

©
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SUMMARY

> E61 will make critical neutrino-nucleus scattering measurements for the T2K and Hyper-K
physics programs

» Controlling flux modeling systematic errors is important for extracting the most precise
neutrino scattering measurements

> I described two analyses where flux uncertainties are important, but they are important for
all E61 analyses

> Can benefit from an overall reduction in the flux uncertainties

> Can benefit from the reduction of the relative uncertainties of pion and kaon
production rates and interaction lengths

> All studies here were done hadron interaction tuning using NA61/SHINE thin target data

> We should implement the replica target tuned flux and evaluate the key areas that need
reduction

17



EXTRA SLIDES
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ENERGY RECONSTRUCTION
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3 Multinucleon Feed-down on Oscillated Flux Multinucleon Feed-down, ND280 Flux

Flux*E

x10 x10°
;140 _ E = 1000 —
120F- SK Oscillated Flux - 5T ND280 Flux :
N . ] I [ —
100) Ev— Erec Smearing - o Ev— Erec Smearing
S0 v=0.8 GeV) - 600}~ (Ev=0.8 GeV)-
601 E 400F .
40 = : i
200 ok = F ey -
% o5 s % 05 1 15 2
Ta|I from nuclear effects E, (GeV) E, (GeV)

» QObserved spectra are smeared by nuclear effects - populate tails in particular
> Different fluxes in near and far detector

> Impact of nuclear effects on the far detector observed spectrum cannot be
directly measured in the near detector

19



ELECTRON NEUTRING CROSS SECTION
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» QObserve mostly muon (anti)neutrino interactions in near detector
» CP violation is observed on electron (anti)neutrino interactions in far detector

> Sensitive to systematic errorson O, /O, ,0, /0
e 1 e 11

> Uncertainties can arise from:

Phys.Rev. D86 (2012) 053003
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section due to axial form factor
uncertainty.
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ELECTRON NEUTRINO CROSS SECTION MEASUREMENT

> Beam contains contamination of electron (anti)neutrinos from muon and three-body
kaon decays

> Fraction of v, increases further off-axis

> Phase-0: measurement of o, /0, <3% systematic error on cross
section ratio measurement between

400 MeV and 1200 MeV (region
High purity v, in Phase-0 of interest)

> Phase-1: measurement of 0,/0,,05/0g
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NUPRISM DISAPPEARANCE SPECTRUM
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- Linear combination of off-axis fluxes
reproduces the far detector
spectrum with oscillation hypothesis
applied >

* The linear combination of off-axis
measurements are used to predict
the reconstructed energy distribution
at the far detector
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NUPRISM DISAPPEARANCE SPECTRUM

Oscillated SK events
- Measured NuPRISM events

- NuPRISM acceptance correction
- Fitted flux difference correction

B on-CCor background
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ELECTRON ANTINEUTRINOS IN PHASE-1
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1-Ring e Candidates

T -_88 - | « At 2.5 degrees off-axis, the
Y | electron antineutrino rate is twice
the electron neutrino rate

1 » NC background reduction can
significantly improve the sample

purity
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NEUTRON MEASUREMENTS
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Super-K will be loaded with Gdz(S0a4)3 to Anti-neutrino

. . .. Proton L
increase neutron detection efficiency to NN\ Gadolinium
~ 90% ll(s:er;)?é%ed @S\a.mma rays

Potential benetits to high energy physics
program:

Originally detectable signal New signal

* Rejection of atmospheric backgrounds to proton decay

e Statistical separation of neutrinos and antineutrinos in
atmospheric and accelerator samples

* Another probe of the hadronic final states in neutrino-nucleus
interactions

To use the additional information from the neutron
detection, measurements of the neutron production in a
intermediate/near detector are important
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