HADRON PRODUCTION NEEDS FOR THE E61 EXPERIMENT

Mark Hartz Kavli IPMU, the University of Tokyo & TRIUMF for the E61 Collaboration

LONG BASELINE NEUTRINOS IN JAPAN

Muon (anti)neutrino survival:

$$P_{\mu \to \mu} = 1 - \left(\sin^2 2\theta_{23} - \sin^2 \theta_{23} \cos 2\theta_{23} \sin^2 2\theta_{13}\right) \sin^2 \left(\frac{\Delta m_{32}^2 L}{4 E_v}\right) + \dots$$

Generate beam of 99% muon (anti)neutrinos

Electron (anti)neutrino appearance:

$$P_{_{\mu \rightarrow e}} = \sin^2 \theta_{23} \sin^2 2 \, \theta_{13} \sin^2 \left(\frac{\Delta \, m_{31}^2 \, L}{4 \, E_{_{\rm V}}} \right) = \frac{\sin 2 \, \theta_{12} \sin 2 \, \theta_{23}}{2 \sin \theta_{13}} \sin^2 2 \, \theta_{13} \sin \left(\frac{\Delta \, m_{21}^2 \, L}{4 \, E_{_{\rm V}}} \right) \sin^2 \left(\frac{\Delta \, m_{31}^2 \, L}{4 \, E_{_{\rm V}}} \right) \sin \delta_{\it CP} + \dots$$

sign flips for antineutrinos = potential CP violation

LONG BASELINE NEUTRINOS IN JAPAN

Muon (anti)neutrino survival:

$$P_{\mu \to \mu} = 1 - \left(\sin^2 2\theta_{23} - \sin^2 \theta_{23} \cos 2\theta_{23} \sin^2 2\theta_{13}\right) \sin^2 \left(\frac{\Delta m_{32}^2 L}{4 E_v}\right) + \dots$$

Generate beam of 99% muon (anti)neutrinos

Electron (anti)neutrino appearance:

$$P_{_{\mu \rightarrow e}} = \sin^2 \theta_{23} \sin^2 2 \, \theta_{13} \sin^2 \left(\frac{\Delta \, m_{31}^2 \, L}{4 \, E_{_{\rm V}}} \right) = \frac{\sin 2 \, \theta_{12} \sin 2 \, \theta_{23}}{2 \sin \theta_{13}} \sin^2 2 \, \theta_{13} \sin \left(\frac{\Delta \, m_{21}^2 \, L}{4 \, E_{_{\rm V}}} \right) \sin^2 \left(\frac{\Delta \, m_{31}^2 \, L}{4 \, E_{_{\rm V}}} \right) \sin \delta_{\it CP} + \dots$$

sign flips for antineutrinos = potential CP violation

SYSTEMATIC ERRORS FOR T2K-II AND HYPER-K

Current T2K systematic errors

Systematic Error Type	1Re Neutrino Mode	1Re Antineutrino Mode
Far Detector Model	2.39%	3.09%
Final State/Secondary Interactions	2.50%	2.46%
Extrapolation from Near Detector	2.88%	3.22%
$\nu_{\rm e}$ (bar)/ ν_{μ} (bar)	2.65%	1.50%
ΝC1γ	1.44%	2.95%
Other	0.16%	0.33%
Total	5.42%	6.09%

- ➤ Current T2K systematic errors are at the ~6% level
- ➤ Need reduction to <5% for T2K-II and <3% for Hyper-K
- > Need to avoid "unknown unknowns" particularly in cross section modeling
 - ➤ Modeling neutrino-nucleus scattering at ~1 GeV is a challenging nuclear physics problem!

THE E61 EXPERIMENT

- ➤ E61 proposed kiloton scale water Cherenkov detector where position can be moved to make measurements at different off-axis angles
 - ➤ Address critical neutrino-nucleus scattering uncertainties for T2K & Hyper-K
- ➤ Staged approach
 - ➤ Phase-0: stationary detector near existing T2K near detectors
 - ➤ Phase-1: detector at \sim 1 km from neutrino source, movable to 1-4° off-axis
- ➤ Have received stage 1 approval from the J-PARC PAC
- ➤ Recent merger of NuPRISM and TITUS collaboration to form single E61 collab.

E61 PHYSICS

- ➤ E61 will make measurements of critical neutrino-nucleus interaction processes for T2K and Hyper-K
- ➤ Measurements on water with sample angular acceptance as far detector
- ➤ 4 key items for the future program:
 - ➤ Probing energy dependence of neutrino interactions through measurements at different off-axis angles
 - \blacktriangleright Measuring the $\sigma(v_e)/\sigma(v_\mu)$ and $\sigma(\overline{v_e})/\sigma(\overline{v_\mu})$ cross section ratios
 - Loading with Gd to study neutron production in neutrino nucleus scattering
 - ➤ Measurement of intrinsic neutral current and electron (anti)neutrino backgrounds for the long baseline program

MOTIVATION: ENERGY RECONSTRUCTION

- Observed spectra are smeared by nuclear effects populate tails in particular
- ➤ Different fluxes in near and far detector
 - ➤ Impact of nuclear effects on the far detector observed spectrum cannot be directly measured in the near detector

MOTIVATION: ELECTRON NEUTRINO CROSS SECTION

- > Observe mostly muon (anti)neutrino interactions in near detector
- > CP violation is observed on electron (anti)neutrino interactions in far detector
- ightharpoonup Sensitive to systematic errors on $\sigma_{v_e}/\sigma_{v_{\mu}}$, $\sigma_{\overline{v_e}}/\sigma_{\overline{v_{\mu}}}$
- ➤ Uncertainties can arise from:
 - Form factor uncertainties in cross section terms that depend on lepton mass
 - ➤ Phase nuclear effects combined with phase space differences due to mass
 - ➤ Radiative corrections (should be calculable)

Phys.Rev. D86 (2012) 053003

Uncertainty on relative cross section due to axial form factor uncertainty.

FLUX UNCERTAINTIES IN E61

- ➤ As with all experiments probing neutrino interactions, E61 wants flux uncertainties that are as small as possible
- ➤ Here I will discussion flux uncertainties in two types of analyses:
 - ➤ Using off-axis dependence of flux to produce mono-energetic neutrino spectra
 - \blacktriangleright Measuring the $\sigma(v_e)/\sigma(v_\mu)$ in Phase-0 of the E61 experiment
- Caveat all studies here use the T2K flux model based on tuning of hadronic interactions using NA61/SHINE **thin** target data
 - > Expect reduction of errors with tuning based on replica target data

ADVANTAGE OF MULTIPLE OFF-AXIS ANGLE MEASUREMENTS

ADVANTAGE OF MULTIPLE OFF-AXIS ANGLE MEASUREMENTS

LINEAR COMBINATION FOR MONO-ENERGETIC BEAM

- ➤ Using prior knowledge of flux model from hadron production data, find coefficients (left) as function of off-axis angle
- ➤ Adding off-axis fluxes with coefficients gives narrow spectrum (red on the right)
- To extract the correct coefficients, we need a precise prior flux model

UNCERTAINTY FOR MONO-ENERGETIC ANALYSIS

Linear Combination, 0.9 GeV Mean

- > Simulate the reconstructed spectrum produced with linear coefficients from previous slide
- ➤ Propagate current T2K flux uncertainties
- ➤ Normalization error is \sim 20% (inflated from \sim 10% by linear combination analysis)
 - ➤ Shape error is small (black error bars)
- ➤ Main goal of this analysis is to measure shape effects, but we can also benefit from reduced flux errors to constrain the normalization uncertainty

ELECTRON NEUTRINO CROSS SECTION IN PHASE-0

- ➤ In phase-0, the baseline detector location is at 8° off-axis
- ► Being further off-axis increases the fraction of v_e in the beam (produced in 3 body decay vs. 2 body decay for v_μ)
- ► Here we will measure the ratio $\sigma(v_e)/\sigma(v_\mu)$
- Pepends on how well we know the flux ratio $\Phi(\nu_e)/\Phi(\nu_\mu)$

Sub-GeV energy range is ofparticular interest.

FLUX RATIO UNCERTAINTY

➤ Hadron interaction uncertainties are dominant in the 0.2-1.0 GeV range for the flux ratio

- Largest error sources:
 - ➤ Pion and kaon interaction lengths
 - ➤ Pion and kaon production

WHAT IS DRIVING THIS FLUX ERROR?

- ➤ For electron neutrinos >0.35 GeV, the production through kaon decays becomes largest
- ➤ For muon neutrinos <0.7 GeV, production from pion decays is still dominant
- ➤ In this region, we are sensitive to uncertainties on the relative production and absorption rates of pions and kaons
 - ➤ Could benefit from reduced uncertainties on the relative rates

CROSS SECTION ANALYSIS RESULTS

- We have studied the $\sigma(v_e)/\sigma(v_\mu)$ measurement using a full simulation and event reconstruction for Phase-0
- Includes backgrounds from interactions in the surrounding sand and detector
- A pure, high statistics sample of electron neutrino candidates can be selected

	Signal	$NC\pi^0$	ΝCγ	ν _μ -CC	Wrong Sign	Entering γ	Total	Purity
8° OAA	9656	1384	172	124	1216	648	13204	73.1%
6° OAA	13068	2672	356	236	972	648	17956	73.8%

SYSTEMATIC ERRORS IN CROSS-SECTION MEASUREMENT

- ➤ In this analysis, we have considered systematic errors from the flux and cross section modeling
- ➤ The errors are propagated in bins of reconstructed energy
- ➤ In the 400-1200 MeV range, the systematic error is 2-3%
- ➤ Dominant contribution coming from flux uncertainties
 - ➤ Can benefit from further reduction

SUMMARY

➤ E61 will make critical neutrino-nucleus scattering measurements for the T2K and Hyper-K physics programs

- Controlling flux modeling systematic errors is important for extracting the most precise neutrino scattering measurements
- ➤ I described two analyses where flux uncertainties are important, but they are important for all E61 analyses
 - ➤ Can benefit from an overall reduction in the flux uncertainties
 - ➤ Can benefit from the reduction of the relative uncertainties of pion and kaon production rates and interaction lengths
- ➤ All studies here were done hadron interaction tuning using NA61/SHINE thin target data
 - ➤ We should implement the replica target tuned flux and evaluate the key areas that need reduction

EXTRA SLIDES

ENERGY RECONSTRUCTION

- Observed spectra are smeared by nuclear effects populate tails in particular
- > Different fluxes in near and far detector
 - ➤ Impact of nuclear effects on the far detector observed spectrum cannot be directly measured in the near detector

ELECTRON NEUTRINO CROSS SECTION

- ➤ Observe mostly muon (anti)neutrino interactions in near detector
- > CP violation is observed on electron (anti)neutrino interactions in far detector
- > Sensitive to systematic errors on $\sigma_{v_e}/\sigma_{v_{\mu}}$, $\sigma_{\overline{v_e}}/\sigma_{\overline{v_{\mu}}}$
- ➤ Uncertainties can arise from:
 - Form factor uncertainties in cross section terms that depend on lepton mass
 - ➤ Phase nuclear effects combined with phase space differences due to mass
 - ➤ Radiative corrections (should be calculable)

Phys.Rev. D86 (2012) 053003

Uncertainty on relative cross section due to axial form factor uncertainty.

ELECTRON NEUTRINO CROSS SECTION MEASUREMENT

- ➤ Beam contains contamination of electron (anti)neutrinos from muon and three-body kaon decays
- \triangleright Fraction of v_e increases further off-axis
- ► Phase-0: measurement of $\sigma_{v_e}/\sigma_{v_u}$
- ► Phase-1: measurement of $\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$, $\sigma_{\overline{\nu_e}}/\sigma_{\overline{\nu_{\mu}}}$

High purity v_e in Phase-0

<3% systematic error on cross section ratio measurement between 400 MeV and 1200 MeV (region of interest)

NUPRISM DISAPPEARANCE SPECTRUM

 Linear combination of off-axis fluxes reproduces the far detector spectrum with oscillation hypothesis applied

The linear combination of off-axis
measurements are used to predict
the reconstructed energy distribution
at the far detector

 The 4% systematic error estimated using the T2K ND280 detector is reduced to 1% with NuPRISM

NUPRISM DISAPPEARANCE SPECTRUM

ELECTRON ANTINEUTRINOS IN PHASE-1

- At 2.5 degrees off-axis, the electron antineutrino rate is twice the electron neutrino rate
 - NC background reduction can significantly improve the sample purity

	Events	Signal %	Wrong-Sign %	Bgnd. %
2.5	1128	37.5	18.4	44.1

NEUTRON MEASUREMENTS

- Super-K will be loaded with Gd₂(SO₄)₃ to increase neutron detection efficiency to ~90%
- Potential benefits to high energy physics program:

- Rejection of atmospheric backgrounds to proton decay
- Statistical separation of neutrinos and antineutrinos in atmospheric and accelerator samples
- Another probe of the hadronic final states in neutrino-nucleus interactions

To use the additional information from the neutron detection, measurements of the neutron production in a intermediate/near detector are important