T2K Future Flux Improvements and Possible Further Hadron Production Measurements

M. Friend
For the T2K Experiment (Beam Group) /
J-PARC Neutrino Facility

KEK

July 28, 2017

Outline

- Near-Term T2K Flux Error Improvements
 - NA61 Replica Target Analysis
 - T2K Beam Analysis Improvements
- Possible Future Flux Error Improvements
 - Ideas for future NA61 Measurements
- Other Possible Future Flux Considerations
 - Future T2K2 (T2HK?) Beam, Target Upgrades

Current T2K Flux Errors

- ullet Total current flux uncertainty is $\sim \! \! 10\%$ at the peak neutrino energy
 - Now predominantly comes from hadron production uncertainties
 - Currently using: NA61 2009 thin target data set to constrain predicted hadron production

Near Future T2K Flux Errors – NA61 T2K Replica Target Data

Thin target : study primary p+C interaction

90 cm

Replica target : accounts for re-interactions in the target

Target	Year	Stat (×10 ⁶)	NA61 Status	T2K Status
Thin	2007	0.7	published : π^\pm , K^+ , $\mathit{K}^0_{\mathit{S}}$, Λ	used
	2009	5.4	published : π^\pm , K^\pm , p , K_S^0 , Λ	used
Replica	2007	0.2	published : π^\pm	method developed
	2009	2.8	published : π^\pm , K^\pm , p , K_S^0 , Λ	work ongoing
	2010	${\sim}10$	analysis ongoing	_

Near Future T2K Flux Errors – NA61 T2K Replica Target Analysis

- 60% of the flux (at the T2K peak energy) is directly tunable with the NA61 thin target data
- Up to 90% will be directly tunable once the replica target data is implemented

Near Future T2K Flux Errors – NA61 T2K Replica Target Analysis

- Now implementing NA61 2009 long target data into T2K flux MC
- Two analysis methods for implementing long target tuning are under development in parallel:
 - Fit hadron production model to NA61 replica target data
 - Use the tuned model (specified by fit parameters) for calculating T2K neutrino fluxes
 - Use nominal hadron production model (FLUKA 2011)
 - Reweight rates of π^\pm outgoing from T2K target directly to NA61 replica target data
 - Effectively, NA61 data used as initial conditional for flux simulation
- Some effects still being studied :
 - Effect of difference in NA61 vs T2K beam profile on flux prediction
 - NA61 replica target data favors a lower value for the proton production cross section compared to the thin target data
 - Fit to long-target data lowers the proton σ_{prod} by 5.9σ compared to NA61 thin target result $(\sigma_{prod}=230.7^{+7.0}_{-4.5} \text{mb} \rightarrow 204 \text{mb})$

Near Future T2K Flux Errors – ν -Mode

- T2K flux errors will also be updated updated after including NA61 replica target data (work in progress)
 - Preliminary results suggest reduction of systematic error due to hadron production uncertainties from ${\sim}10\%$ to ${\sim}5\%$ at the peak neutrino energy

Near Future T2K Flux Errors – $\bar{\nu}$ -Mode

- T2K flux errors will also be updated updated after including NA61 replica target data (work in progress)
 - Preliminary results suggest reduction of systematic error due to hadron production uncertainties from ${\sim}10\%$ to ${\sim}5\%$ at the peak neutrino energy

Near Future T2K Flux Errors

- Hadron production errors will no longer be dominant contributor to total error ..?
 - Need to ensure that other T2K flux related errors are also reduced as we improve the hadron production errors
 - Proton beam profile and off-axis angle
 - Proton number normalization

Reduction of Non-Hadron T2K Flux Errors

Beam Profile Uncertainties

- Dominant source of proton beam profile error is uncertainty in the proton beam y, θ_y measurement
 - Comes partly from uncertainty in primary-secondary beamline alignment..

- Error is currently assigned by a fit to proton beam profile monitor measurement + INGRID (on-axis T2K near detector) neutrino beam profile measurement
- Uncertainties are $\Delta y \sim 0.6$ mm, $\Delta \theta_v \sim 0.3$ mrad
 - \rightarrow Cause 6% flux error at 1 GeV
- Currently, the error is being double counted
 - Proton beam profile + INGRID off-axis angle measurement are treated as separate, uncorrelated flux error sources
 - → Now starting work on an improved analysis technique

Reduction of Non-Hadron T2K Flux Errors – Flux Normalization Error

- Flux normalization error comes from uncertainties on proton number measurement
 - Measured by Current Transformers (CTs) in the T2K proton beamline

- Last year, updated CT analysis method and absolute calibration to reduce the POT normalization uncertainty from 2.7% to ~2.0%
 → To be fully implemented in T2K analysis soon
- Normalization error has basically no effect on oscillation analysis, since a far/near neutrino flux ratio is used, but can have some effect on near detector cross section measurements

Reduction of Hadron-Production Flux Errors – Improved Cross Section Measurements

- Meson multiplicity and interaction length errors will be dominant contributions to hadron production flux error after NA61 replica target data is included
 - → Some improvement can come from reduction of the total cross section uncertainties (rather than hadron production cross section uncertainties)

Hadron Production Errors with Replica Target Tuning

- These errors can be reduced by improved elastic/quasielastic cross section measurement at NA61?
 - Now there are a couple of early proposals for such measurements at NA61 + FNAL

Additional NA61 Data to Improve Errors?

- Out-of-target interactions (on Al, Fe, Ti) contribute to a significant fraction of the wrong sign flux
 - Can be substantial contribution to $\bar{\nu}$ -mode beam flux (compared to ν -mode) since :
 - In ν -mode, \sim 0.12 interactions/ ν take place outside of the target
 - In $\bar{\nu}$ -mode $\rightarrow \sim 0.43 \sim 0.5$ interactions/ ν
- NA61 data are used to tune the predicted production of mesons in secondary or tertiary interactions
 - 1 For incident neutrons, assume an isoscalar nuclear target and apply an isospin rotation to the NA61 data
 - 2 Since the incident secondary or tertiary proton or neutron has energy less than 30 GeV, scaling is applied so that the NA61 tuning can be applied to the interaction
 - 3 For out-of-target interactions, NA61 data are scaled to Al, Fe, Ti targets using parameterized fits to multiplicity data on multiple nuclear targets
 - ullet Use parameterized fits to Allaby, BNL-E802, HARP data + cross check to Eichten
- May be useful to take dedicated NA61 data on different targets (Al, Fe, Ti, H_2O ?), at lower beam energies (down to $\sim 10 \text{GeV}$)

Other Additional NA61 Data to Improve Errors?

- General ideas from some brainstorming within T2K beam group.. :
 - NA61 took some high magnetic field data, but more data could be useful?
 - Improve measurement by taking data with new target position (insert into magnet)?
 - Additional NA61 empty target data useful?
 - NA61 vs T2K target density uncertainty may contribute to flux errors
 possible measurements with different target densities?

Other J-PARC Neutrino Beamline Future Upgrades

- Different beam energy ?
- New T2K target ?
 - See next slides

Possible Upgrade of T2K Target – Motivation

- Aim to enhance the CP-violation search sensitivity of T2K-II by upgrading the production target
 - Increase ν -beam yield / POT = Increase π yield / POT and/or π focusing efficiency
 - Decrease wrong-sign component (ν component in $\bar{\nu}$ -beam) = Suppress very-forward π^+ production during π^- focusing
 - ightarrow Use higher-density material for target
 - Cf. IG-430 (Graphite used for T2K target) = \sim 1.8 g/cm³
 - But, the heat generated by beam exposure is also increasing any new material should have the enough thermal sock resistance
 - \rightarrow Candidate materials :
 - SiC/SiCcomposite : density=2.5~3.1g/cm³
 - Super-Sialon (Si₃N₄+Al₂O₃): density=~3.22 g/cm³ ← Good Candidate (http://www.hitachimetals.com/materialsproducts/ceramics/sialon.php)

New T2K Target Conceptual Design: Hybrid-target

- Just replacing graphite with some other dense material does not work well
 - Increase of π absorption cancels increase of π production
 - \rightarrow Replace only the core part of the target

Pros:

- +Increases pion production w/o increasing pion absorption for pions in horn acceptance
- + Production point becomes point-like \rightarrow better focusing
- + Decreases forward pions outside horn acceptance
- + Even if the core is damaged, it is contained by a graphite sheath

Cons:

+ Cooling method (How to keep thermal contact btw. the core and sheath?)

Prospects + To Do for T2K Target

Neutrino flux simulation Upgrade

(Hadron production model: GFLUKA, Hybrid target: SiC + C)

- To do:
 - Optimization of the core / sheath dimension based on the latest hadron production model & more realistic material properties
 - Mechanical design, Cooling design, etc.
 - After finalizing a realistic design and having a prospect for real target production in the future, it may be necessary to measure the hadron production with the actual material
 - Measurement with a thin target made of the core material (Super-Sialon?)
 - Measurement with a long target with the actual hybrid target structure

Conclusion

- Near-Term T2K flux error improvements, such as implementation of NA61 replica target analysis, some T2K beam analysis improvements, are underway
- Possible future flux error improvements can come from further NA61 measurements
 - Improved elastic/quasielastic cross section measurements ?
 - Measurements on different targets at lower beam energies ?
 - Others ?
- Other possible future flux considerations for T2K
 - Future T2K2 (T2HK?) beam energy, target upgrades should be kept in mind

Backup Slides

Replica Target Errors – ν -Mode

Replica Target Errors – $\bar{\nu}$ -Mode

SK: Negative Focusing Mode, ∇.,

SK: Negative Focusing Mode, v,,