Measurements of hadron yields from T2K replica target

Matej Pavin, for the NA61/SHINE collaboration

28.07.2017.

Outline

- p + T2K RT @ 31 GeV/c (taken in 2010)
- Measurements of hadron yields from surface of the T2K replica target
- Motivation
- Setup and target
- Analysis
- Systematics
- π⁺, π⁻ yields
- K^+ , K^- , p yields \rightarrow measured for the first time
- Comparison with measurements performed using 2009 data
- Beam survival probability

p + T2K RT measurements in NA61/SHINE

Beam and triggers (2010)

- Secondary beam at 31 GeV/c (12% of protons)
 Wide (T2) and narrow
 - CEDAR + THC → > 99.9% beam purity

 Wide (T2) and narrow (T3) beam profile

Analysis procedure

1. Event selection

- Good measurement of beam position
- Insure that beam particle enters the target
- 75% of events are selected

- 2. Track selection
 - PID requirements
 - Quality cuts
 - Extrapolation towards the target surface with covariance matrix propagation (for some topologies, couple of meters)

3. PID

- dE/dx tof
- 4. Correction factors

Phase space

N_{tracks}/N_{events}

10⁻²

 10^{-3}

- neutrino flux depends on the longitudinal position on the target surface
- 5 longitudinal (z) bins + downstream target face
- polar angle (Θ) and momentum (p) bins
 - different for different particle species

Particle identification

Energy loss - crossing of the energy loss distributions for low momenta

8

Particle identification

- Joint dE/dx-m²_{tof} fit
- 4 × 2D Gaussians
- Initial parameter values taken from the dE/dx and tof calibrations

TOF correction factor

- TOF signals are not simulated in MC
- Efficiency based on the data → percentage of tracks hitting the downstream end of MTPCs with reconstructed TOF hits
- Depends on TOF slat (95% 98%, lower for slats closer to the beamline)

Double differential yields

- $\alpha \rightarrow$ particle species: π^{\pm} , K[±], p
- i → z bin number
- $\mathbf{j} \rightarrow \mathbf{\Theta}$ bin number
- $\mathbf{k} \rightarrow \mathbf{p}$ bin number
- N_{pot} → number of protons on target (number of selected events)

- n^{α}_{iik} + number of extracted particles from PID fit in a given phase space bin
- Δp_{iik} → momentum bin size
- $\Delta \Theta_{ii} \rightarrow$ polar angle bin size
- $C^{MC}_{ijk} \Rightarrow$ Monte Carlo correction factor $C^{tof}_{ijk} \Rightarrow$ time of flight correction factor

Uncertainties			Max. range Majority of bins			
Uncertainty	π*	π		К⁺ /	K.	р
Statistical	1% - 25% (< 4%)	1.5% - 25% (< 4%)	3% (5	% - 25% % - 10%)	5% - 25% (7% - 12%)	1%-25% (< 5%)
Bin migration	< 8% (< 1%)	< 10% (< 1%)	< ;	3% (< 1%)	< 3% (< 1%)	< 8% (< 1%)
TOF efficiency	< 1.5% (< 0.8%)	< 3% (< 0.8%)	< (0.8%	< 0.8%	< 1.5% (< 0.8%)
Hadron loss	< 25% (< 1%)	< 25% (< 1%)	< '	10% <mark>(< 1%)</mark>	< 10% (< 1%)	< 25% (< 1%)
Feed-down	< 1.5%	< 2.5%	-		-	< 3.5%
PID	< 2% <mark>(0%)</mark>	< 2% (0%)	< '	12%	< 12%	< 2% <mark>(0%)</mark>
Reconstruction	2%	2%	2%	6	2%	2%

π^+ yields

Full comparisons: https://edms.cern.ch/document/1828979/1

π^{-} yields

K⁺ yields

Full comparisons: https://edms.cern.ch/document/1828979/1

K⁺ yields:

Data

FLUKA 2011.2c.5

NuBeam G4.10.03

K⁻ yields

Full comparisons: https://edms.cern.ch/document/1828979/1

K yields:

Data

FLUKA 2011.2c.5

NuBeam G4.10.03

p yields

Full comparisons: https://edms.cern.ch/document/1828979/1

p yields: ──∳── Data

FLUKA 2011.2c.5

NuBeam G4.10.03

2009 vs. 2010 data

- hadron yields depend on the beam size, width and position
- 2009 beam profile ≠ 2010 beam profile (wider in 2009)

Measurement of beam survival probability

- 10% of events taken with max. mag. field P_s configuration (1.5 T)
- Beam particles bent to TPCs
- proton peak: $\sigma_p/p = 0.7$

$$F_{urv} = \frac{N_{tpc}}{N_{beam}} \cdot C_{MC} \cdot C_{tof} = e^{-Ln\sigma_{prod}}$$

- P_{surv} → survival probability
- N_{tpc} → number of high momentum tracks measured in TPCs with time of flight hit
- N_{beam} → number of selected events
- C_{MC} → Monte Carlo correction factor
- C_{tof} → tof efficiency correction factor
- L → length of the proton trajectory through the target
- n → number of carbon atoms per unit volume
- σ_{prod} → production cross section → at least one
 new hadron (pion) produced

Measurement of survival probability

- Proton peak at 30.52 GeV/c → selected tracks are 2σ around peak
- tof hits → remove off-time beam particles
- Results WITHOUT MC corrections (sel. and rec. efficiency, ...):

 P_{surv} (data, rec) = 0.1353 ± 0.0005 (stat)

P_{surv}(FLUKA, rec) = 0.1196 ± 0.0002 (stat)

$$\sigma_{prod}^{MC} - \sigma_{prod}^{data} = -\frac{1}{nL} \ln \left(\frac{P_{surv}^{MC}}{P_{surv}^{data}} \right)$$

 \rightarrow ~ 15 mb higher $\sigma_{_{prod}}$ in FLUKA 2011.2c.5

Possible systematics:

- time of flight
- target density
- target length
- momentum resolution in MC
- Elastic, quasi-el. or production events?

WORK IN PROGRESS! JUST FOR ILLUSTRATION!

Conclusion

- Hadron yields coming from the surface of the T2K replica target
 - Data taken in 2010 (Analysis successfully finalized)
 - π^+ , π^- + reduced uncertainty when compared to measurements performed using 2009 data
 - \circ K⁺, K⁻, p yields \Rightarrow measured for the first time
 - FLUKA 2011.2c.5 gives the best overall prediction of the results
 - \circ Comparison of π yields with measurements performed using 2009 data shows expected differences due to different beam profiles
 - Paper in preparation
- The measurements are expected to further reduce neutrino flux uncertainty in T2K below 5%
- Possible measurement of survival probability
- NA61/SHINE spectrometer is currently a unique opportunity to perform high-quality hadron production measurements for ongoing and future neutrino experiments