

Possibilities for (Very) Low Energy beams at CERN North Area

N. Charitonidis (CERN, EN-EA)

EHN1 Extension - H2 VLE Beam Schematic Layout

Presentation outline

Introduction – CERN North Area Beam Facility

H2-VLE and H4-VLE beam lines

Outlook in their performance and characteristics

Possibilities for NA61 ?

Summary / Conclusions

The Experimental Hall North 1 – EHN1

Part of the SPS North Area complex in the CERN prevessin site

- ~300 m long, 50 m wide industrial type building
- Houses 4 beam lines (H2/H4/H6/H8)
- General purpose building, modular infrastructure, easy to adapt to the needs of the experiments

The North Area Beam Lines – Example H2

H2: A precise (2% dp/p acceptance), robust, flexible magnetic spectrometer

[&]quot;Wobbling" of the beam *before* and *after* the target allows for flexibility on the particles selected and transported to the experimental areas.

North Area Beam line characteristics

- Very large momentum range from approx. 10 GeV/c → 400 GeV/c (primary beam)
- Mixed hadron or pure electron secondary (or tertiary) beams
- High intensity (limited by the radiation protection rules in the halls):
 1E7 particles / spill (4.8s)
- → However : Designed for high energies (>300 GeV/c).
 - Power supplies of bends and quads not very stable when operating in very low currents (for 10 GeV → 31A, setting error 0.2A → 0.6% momentum or 50% acceptance!)
 - Total length (H2): ~ 600 m For low energy particles becomes critical
 - Most of the available instrumentation is tuned for high intensities > 1E5 pps

H2 / H4 Magnetic Spectrometer Magnets

But in case of low momenta (< 10 GeV/c)

- Challenges & Specifications:
 - →Short length of the beam line
 - → Minimizing the muon/charged particle background (important for slow readout detectors, like LAr TPC's...., or in any other detector)
 - → Momentum selection within a few %
 - → Sufficient acceptance → Rate to the experiment

V-L-E Extensions of the secondary beam lines

- A "tertiary" beam line and a second magnetic spectrometer, with the low-energy particles being created and selected close to the experiment
- Not a "new" idea Successful implementations in the past in H8 (for ATLAS) and H2 (for CMS)
 - https://arxiv.org/ftp/arxiv/papers/1206/1206.2184.pdf
 - CMS NOTE-2008/034
- (!) The H2 configuration for CMS was located just upstream NA61 (PPE142-52)

H2-VLE (2003)

▶Four-bends layout

 Available magnets: MBPL 120mrad for 1-9 GeV beams

- design used for the ATLAS(H8)
 &CMS(H2) calorimeters in the past
- suffers from large background from the direct secondary beam Courtesy: I. Efthymiopoulos

H2-VLE (2017)

→ Using large angles and off-axis placement of the detector wrt the secondary beam reduces the muon background

Beam Layout - H2-VLE

- Tilted dipoles & quadrupoles
 - > 34.9 degrees with respect to x-plane
 - > Total bend angle: 234.8 mrad in the bending plane
- Momentum selection collimator available
 - \triangleright Full acceptance δp/p: 5%

Beam Composition

Assuming ~10⁶ particles / spill on the secondary target

NP-02 rate

References: CERN-ACC-NOTE-2016-0052, CERN-ACC-NOTE-2016-0059

Momentum	e+	K+	mu+	р	pi+	Trigger rate [Hz]
0.4	7	0	0	0	0	7
1	21	0	0	4	3	28
2	17	0	0	7	12	36
3	14	1	1	10	30	56

Momentum	e+	K+	mu+	р	pi+	Trigger rate [Hz]
3	145	1	1	16	49	213
4	117	3	1	16	80	218
5	94	5	2	20	100	222
6	77	9	2	25	133	247
7	69	11	2	28	169	279
8	59	16	3	35	193	305
9	51	19	3	37	227	337
10	46	22	3	45	254	370
11	41	27	3	53	268	393
12	38	29	3	60	292	422

Table 2: Trigger rate for a Cu (0.4 - 3 GeV/c) target and a W (4-12 GeV/c) target.

Momentum Resolution

Beam lines equipped with a momentum selection station which can offer a dp/p down to 2.3%

Further improve of the resolution with a spectrometer (using 3 profile monitors) around a bending magnet

References: CERN-ACC-NOTE-2016-0052, CERN-ACC-NOTE-2016-0059

Instrumentation

- Beam momentum spectrometer
 - ≥3 profile monitors around a bending magnet
- 2 Gas Cherenkov Detectors per beam line
 - > R134a & CO2 gases (1 high and 1 low pressure)
 - ▶p/K/pi separation from >2 GeV/c
 - ➤e- tagging
- ToF using scintillating fiber detectors or ionization detectors
 - ▶p/pi separation <2 GeV/c</p>
- Profile/Intensity monitors
 - ➤ Necessary for beam tuning
- → All of the above combined with the triggers of the experiment!
 - → A challenging exercise!

Possibilities (and challenges) for NA61 low-energy configuration

- The possibility of a "dogleg" or similar configuration could be studied in PPE142-PPE152 (upstream NA61)
 - Magnets and power supplies availability?
 - Space availability with NA61 in place with minimal disturbance to the downstream experiments and the 'normal' operation of the beam line?
 - Acceptance/rate to be achieved ?
- Composition, background to the experiment & instrumentation
 - Low proton content in tertiary beams (~5-10%)?
 - Muons from the secondary beam can they be vetoed?
 - Rate does not exceed ~a few hundred of Hz

Conclusions

- VLE (Very Low Energy) beam lines have been designed, implemented and operated in the past in EHN1 with success
 - Two new VLE extensions will be operational in 2018 to serve NP-02 and NP-04.
- They are able to provide mixed hadrons (p,pi+,k+) and/or pure e+, in a short length and with a maximum momentum bite of 5%
- The spot size is large \sim 10x10 cm2 tunable depending on the exact line configuration
- A possibility for implementing such a configuration for NA61 can be studied.